Bounds on the minimum distance of additive quantum codes

Bounds on [[45,10]]2

lower bound:9
upper bound:13

Construction

Construction type: DastbastehShivj

Construction of a [[45,10,9]] quantum code:
[1]:  [[45, 10, 9]] quantum code over GF(2^2)
     cyclic code of length 45 with generating polynomial x^44 + x^43 + w^2*x^41 + x^40 + x^39 + w^2*x^38 + x^37 + x^36 + x^35 + x^32 + x^31 + x^30 + w*x^29 + x^28 + x^27 + w*x^26 + x^24 + x^22 + x^21 + w^2*x^20 + x^19 + w^2*x^18 + w

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1|1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0]
      [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 0|0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0]
      [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0|0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1]
      [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 0 0 0|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0 0 1]
      [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 1 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1|0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0]
      [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0|0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0]
      [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0|0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0]
      [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0|0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1]
      [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1|0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0|0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1]

last modified: 2024-05-06

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024