Bounds on the minimum distance of additive quantum codes

Bounds on [[100,90]]2

lower bound:3
upper bound:3

Construction

Construction of a [[100,90,3]] quantum code:
[1]:  [[100, 90, 3]] quantum code over GF(2^2)
     QuasiCyclicCode of length 100 stacked to height 2 with generating polynomials: x^2 + 1,  x^3 + x^2 + 1,  w*x^4 + x^2 + w^2*x + w,  w*x^2 + w^2*x + w^2,  x^4 + x^3 + w*x^2 + w*x + 1,  w*x^4 + w*x^3 + x^2 + w*x + 1,  x^4 + w*x^2 + w*x + 1,  w^2*x^2 + w*x + 1,  w^2*x^4 + w^2*x^3 + x^2 + w^2*x + 1,  w^2*x^4 + w*x^3 + w^2*x^2 + w^2,  w^2*x^4 + w*x^3 + w*x^2 + x + w,  w^2*x^4 + x^3 + x^2 + w*x + w^2,  w^2*x^4 + w^2*x + w,  w*x^4 + w*x^3 + w*x + 1,  w*x^3 + w^2,  w*x^2 + w*x + w^2,  w*x^4 + x^3 + x^2 + w^2*x + w,  x^4 + x^3 + w^2*x^2 + w*x + w^2,  w^2*x^2 + w^2*x + w,  w^2*x^3 + x + 1,  w*x^2 + w,  w*x^3 + w*x^2 + w,  w^2*x^4 + w*x^2 + x + w^2,  w^2*x^2 + x + 1,  w*x^4 + w*x^3 + w^2*x^2 + w^2*x + w,  w^2*x^4 + w^2*x^3 + w*x^2 + w^2*x + w,  w*x^4 + w^2*x^2 + w^2*x + w,  x^2 + w^2*x + w,  x^4 + x^3 + w*x^2 + x + w,  x^4 + w^2*x^3 + x^2 + 1,  x^4 + w^2*x^3 + w^2*x^2 + w*x + w^2,  x^4 + w*x^3 + w*x^2 + w^2*x + 1,  x^4 + x + w^2,  w^2*x^4 + w^2*x^3 + w^2*x + w,  w^2*x^3 + 1,  w^2*x^2 + w^2*x + 1,  w^2*x^4 + w*x^3 + w*x^2 + x + w^2,  w*x^4 + w*x^3 + x^2 + w^2*x + 1,  x^2 + x + w^2,  x^3 + w*x + w

    stabilizer matrix:

      [1 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0|1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0]
      [0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0|0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 1]
      [0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1|0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 1 1 0]
      [0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1|0 0 0 1 1 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1]
      [0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1|0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0]

last modified: 2006-04-03

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024