Bounds on the minimum distance of additive quantum codes

Bounds on [[35,9]]2

lower bound:8
upper bound:10

Construction

Construction type: EzermanGrasslLingOzbudakOzkaya

Construction of a [[35,9,8]] quantum code:
[1]:  [34, 13] Linear Code over GF(2^2)
     QuasiTwistedCyclicCode of length 34 and constant w^2 with generators: x^4 + w*x^3 + x^2 + x + w,  w*x^16 + x^15 + x^12 + w*x^8 + w^2*x^6 + w^2*x^4 + x^3 + w^2*x^2 + x + 1
[2]:  [[35, 9, 8]] quantum code over GF(2^2)
     QuantumConstructionX applied to [1] with e = 1

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0|1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1]
      [0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0|0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1 0 1 0]
      [0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1|0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1]
      [0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1|0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0]
      [0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1|0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0]
      [0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1|0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 0]
      [0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1|0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 1 0 0 0]
      [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 1|0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1]
      [0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0|0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1]
      [0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1|0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1]

last modified: 2024-06-07

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024