Bounds on the minimum distance of additive quantum codes
Bounds on [[105,80]]2
| lower bound: | 6 |
| upper bound: | 8 |
Construction
Construction type: GaunLiLvMa
Construction of a [[105,80,6]] quantum code:
[1]: [[105, 80, 6]] quantum code over GF(2^2)
cyclic code of length 105 with generating polynomial x^91 + x^90 + x^89 + w^2*x^88 + w*x^86 + w*x^82 + x^81 + w*x^80 + w*x^79 + x^78 + w^2*x^77 + x^76 + w^2*x^75 + w^2*x^74 + x^73 + w^2*x^72 + w*x^71 + w*x^70 + w*x^67 + x^66 + w*x^65 + x^64 + w*x^63 + w^2*x^61 + w^2*x^60 + w*x^59 + w^2*x^58 + x^57 + w^2*x^56 + w*x^54 + w^2*x^53 + w^2*x^52 + w*x^51 + w^2*x^50 + x^49 + x^48 + x^46 + w^2*x^45 + w*x^44 + x^43 + w^2*x^40 + x^38 + w^2*x^37 + w^2*x^35 + w*x^34 + w^2*x^33 + w^2*x^32 + x^29 + x^28 + w*x^27 + w*x^25 + w^2*x^24 + x^23 + x^22 + x^21 + w^2*x^20 + x^18 + w*x^17 + w*x^16 + w^2*x^15 + w*x^14 + w^2*x^13 + x^12 + x^11 + w*x^9 + w^2*x^6 + w^2*x^5 + w*x^4 + x^3 + w*x^2 + w*x + w
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1|1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1|0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 0 0 1]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1|0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 0]
[0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 0 1 1 0 1|0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1]
[0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0|0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0]
[0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0|0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1]
[0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1|0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0]
[0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1|0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1]
[0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1|0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0|0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 1|0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 0]
last modified: 2024-06-17
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024