Bounds on the minimum distance of additive quantum codes
Bounds on [[61,7]]2
| lower bound: | 13 |
| upper bound: | 19 |
Construction
Construction of a [[61,7,13]] quantum code:
[1]: [[62, 6, 14]] quantum code over GF(2^2)
cyclic code of length 62 with generating polynomial w*x^34 + w^2*x^33 + w*x^32 + x^31 + x^30 + w^2*x^29 + x^27 + w^2*x^26 + w*x^25 + x^24 + x^23 + w*x^22 + w^2*x^21 + w^2*x^20 + w^2*x^19 + w*x^18 + w*x^15 + w*x^14 + x^13 + w*x^12 + w*x^11 + w*x^9 + w*x^8 + w*x^7 + x^6 + w*x^5 + x^3 + x^2 + w*x + 1
[2]: [[61, 7, 13]] quantum code over GF(2^2)
Shortening of the stabilizer code of [1] at { 62 }
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1|1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1|0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 1|0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0 1]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 1]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0|0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1|0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1|0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 1 1|0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 1]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0|0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1|0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 0 1 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 0 1 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 0 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 0 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1]
last modified: 2024-06-17
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024