Bounds on the minimum distance of additive quantum codes

Bounds on [[85,68]]2

lower bound:4
upper bound:5

Construction

Construction of a [[85,68,4]] quantum code:
[1]:  [[85, 69, 4]] quantum code over GF(2^2)
     QuasiCyclicCode of length 85 with generating polynomials: w*x^16 + x^13 + w*x^12 + w^2*x^11 + w*x^10 + w*x^9 + x^8 + w^2*x^7 + w*x^6 + w^2*x^5 + w*x^4 + w^2*x^3 + w^2*x^2 + w^2,  w^2*x^16 + x^15 + w*x^14 + w*x^11 + w*x^10 + w*x^9 + x^8 + x^6 + w*x^4 + w*x^3 + x + w^2,  w^2*x^16 + w^2*x^14 + w^2*x^12 + w^2*x^11 + w*x^10 + w^2*x^9 + w*x^8 + x^7 + w*x^6 + w^2*x^5 + w^2*x^4 + w^2*x^3 + w*x^2 + 1,  x^15 + x^10 + w*x^8 + w*x^6 + w*x^5 + w*x^3 + w*x^2 + w,  w*x^16 + w^2*x^12 + x^9 + x^8 + w^2*x^7 + w^2*x^6 + w*x^4 + x^3 + x + w^2
[2]:  [[85, 68, 4]] quantum code over GF(2^2)
     Subcode of [1]

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0|1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1]
      [0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 0 0|0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0|0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0]
      [0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 0|0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0|0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0]
      [0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1|0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1]
      [0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0|0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0 1]
      [0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0|0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1|0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 1 1 0 1]
      [0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1|0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 0|0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 1]
      [0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0|0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 1|0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1]
      [0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1|0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0|0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1]
      [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1]

last modified: 2006-04-03

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024