Bounds on the minimum distance of additive quantum codes

Bounds on [[75,61]]2

lower bound:4
upper bound:4

Construction

Construction of a [[75,61,4]] quantum code:
[1]:  [[75, 61, 4]] quantum code over GF(2^2)
     QuasiCyclicCode of length 75 with generating polynomials: w^2*x^12 + w^2*x^11 + w*x^8 + w*x^7 + x^6 + w*x^5 + w^2*x^4 + w*x^3 + w*x^2 + w^2*x + w^2,  x^14 + w^2*x^12 + x^11 + w^2*x^9 + w*x^8 + x^7 + w^2*x^6 + w*x^5 + w*x^4 + x^2 + x,  w*x^14 + x^13 + w^2*x^12 + w^2*x^11 + x^9 + x^8 + x^7 + w*x^6 + w*x^5 + w^2*x^4 + w*x^3 + x^2 + w*x,  w^2*x^14 + w^2*x^13 + w*x^12 + w*x^10 + x^9 + w^2*x^8 + x^6 + x^5 + x^3 + w*x^2 + 1,  w^2*x^13 + x^12 + w^2*x^11 + w*x^10 + w*x^9 + w^2*x^7 + w*x^6 + w*x^4 + w^2*x^2 + 1

    stabilizer matrix:

      [1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 1|0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1]
      [0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1|1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1 1 1 0]
      [0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1|0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 1]
      [0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 1|0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 1 0]
      [0 0 1 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1]
      [0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1|0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 0 1 1 1]
      [0 0 0 1 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1]
      [0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1|0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 0 1 1]
      [0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 1 0 0 0 1|0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0]
      [0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0|0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1]
      [0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 1 0 0 0|0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1 1 1 1]
      [0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1 1 1 1|0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1]
      [0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0|0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 0 0]
      [0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 0 0|0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0]

last modified: 2006-04-03

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024