Bounds on the minimum distance of additive quantum codes
Bounds on [[90,58]]2
| lower bound: | 7 |
| upper bound: | 10 |
Construction
Construction type: EzermanGrasslLingOzbudakOzkaya
Construction of a [[90,58,7]] quantum code:
[1]: [[90, 58, 7]] quantum code over GF(2^2)
QuasiCyclicCode of length 90 stacked to height 3 with generating polynomials: w*x^40 + w*x^33 + w*x^30 + w*x^28 + w*x^27 + w*x^26 + w*x^24 + w*x^23 + w*x^22 + w^2*x^21 + x^20 + w^2*x^18 + x^16 + w^2*x^15 + w^2*x^14 + w^2*x^13 + w*x^12 + w*x^10 + x^8 + w*x^7 + w*x^6 + x^5 + x^4 + w^2*x^3 + w*x + 1, w*x^44 + w*x^42 + x^40 + w^2*x^39 + w*x^38 + w*x^37 + w*x^35 + w*x^34 + x^31 + w*x^30 + w^2*x^29 + w^2*x^27 + x^26 + w*x^25 + w*x^24 + x^23 + w^2*x^22 + x^21 + w^2*x^19 + x^18 + x^17 + w^2*x^16 + w*x^15 + x^14 + w*x^12 + x^11 + x^10 + w^2*x^9 + w^2*x^8 + x^7 + w^2*x^5 + w^2*x^4 + x^3 + w*x^2 + w^2*x + w^2, 0, w*x^43 + w*x^42 + w^2*x^41 + w*x^40 + x^38 + x^37 + w*x^36 + x^35 + w^2*x^33 + w^2*x^32 + x^31 + w^2*x^30 + w*x^28 + w*x^27 + w^2*x^26 + w*x^25 + x^23 + x^22 + w*x^21 + x^20 + w^2*x^18 + w^2*x^17 + x^16 + w^2*x^15 + w*x^13 + w*x^12 + w^2*x^11 + w*x^10 + x^8 + x^7 + w*x^6 + x^5 + w^2*x^3 + w^2*x^2 + x + w^2, w*x^41 + w*x^38 + w*x^37 + w*x^35 + w*x^33 + w*x^32 + w*x^31 + w*x^30 + w*x^26 + w*x^23 + w*x^22 + w*x^20 + w*x^18 + w*x^17 + w*x^16 + w*x^15 + w*x^11 + w*x^8 + w*x^7 + w*x^5 + w*x^3 + w*x^2 + w*x + w, w*x^44 + w*x^40 + w*x^37 + w*x^36 + w*x^34 + w*x^32 + w*x^31 + w*x^30 + w*x^29 + w*x^25 + w*x^22 + w*x^21 + w*x^19 + w*x^17 + w*x^16 + w*x^15 + w*x^14 + w*x^10 + w*x^7 + w*x^6 + w*x^4 + w*x^2 + w*x + w
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1|1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0|0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1|0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1|0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0|0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 0 1 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 0|0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0|0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1|0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 1]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0|0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0]
last modified: 2024-05-14
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024