Bounds on the minimum distance of additive quantum codes

Bounds on [[71,58]]2

lower bound:4
upper bound:4

Construction

Construction of a [[71,58,4]] quantum code:
[1]:  [[70, 58, 4]] quantum code over GF(2^2)
     QuasiCyclicCode of length 70 stacked to height 2 with generating polynomials: x^34 + x^33 + w^2*x^31 + w^2*x^29 + w^2*x^28 + w*x^27 + w^2*x^26 + x^24 + w^2*x^23 + x^21 + w*x^20 + x^19 + w^2*x^18 + w*x^17 + x^16 + w^2*x^14 + x^13 + w*x^12 + x^11 + w*x^10 + w^2*x^9 + w^2*x^8 + w^2*x^6 + w*x^5 + w^2*x^4 + x^3 + x,  w^2*x^32 + x^27 + w*x^25 + w*x^24 + w*x^23 + x^22 + w*x^19 + w^2*x^17 + w*x^16 + w*x^14 + w*x^13 + w^2*x^12 + w*x^10 + w*x^8 + w^2*x^7 + w*x^6 + w*x^5 + w*x^4 + x^2 + w*x + w,  w*x^34 + w*x^33 + x^31 + x^29 + x^28 + w^2*x^27 + x^26 + w*x^24 + x^23 + w*x^21 + w^2*x^20 + w*x^19 + x^18 + w^2*x^17 + w*x^16 + x^14 + w*x^13 + w^2*x^12 + w*x^11 + w^2*x^10 + x^9 + x^8 + x^6 + w^2*x^5 + x^4 + w*x^3 + w*x,  x^32 + w*x^27 + w^2*x^25 + w^2*x^24 + w^2*x^23 + w*x^22 + w^2*x^19 + x^17 + w^2*x^16 + w^2*x^14 + w^2*x^13 + x^12 + w^2*x^10 + w^2*x^8 + x^7 + w^2*x^6 + w^2*x^5 + w^2*x^4 + w*x^2 + w^2*x + w^2
[2]:  [[71, 58, 4]] quantum code over GF(2^2)
     ExtendCode [1] by 1

    stabilizer matrix:

      [1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 0|0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0|1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 0]
      [0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0|0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0]
      [0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0|0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 0]
      [0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0|0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0]
      [0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0|0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0]
      [0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 0|0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0]
      [0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0|0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0]
      [0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0|0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0]
      [0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0|0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0]
      [0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0|0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0]
      [0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0|0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

last modified: 2006-04-03

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024