Bounds on the minimum distance of additive quantum codes
Bounds on [[73,55]]2
| lower bound: | 5 |
| upper bound: | 6 |
Construction
Construction type: DastbastehLisonek
Construction of a [[73,55,5]] quantum code:
[1]: [[73, 55, 5]] quantum code over GF(2^2)
cyclic code of length 73 with generating polynomial w*x^72 + w*x^71 + w^2*x^70 + w*x^69 + w*x^68 + w*x^67 + x^66 + w*x^65 + w^2*x^63 + x^62 + w^2*x^61 + x^60 + w^2*x^59 + w*x^58 + x^57 + x^56 + w^2*x^55 + w^2*x^53 + w^2*x^52 + x^51 + w^2*x^50 + w*x^49 + w*x^47 + w*x^46 + w^2*x^44 + x^43 + w*x^42 + x^41 + w*x^40 + w*x^39 + w*x^38 + x^36 + x^35 + w*x^33 + x^32 + x^30 + w*x^28 + x^27 + w^2*x^26 + w*x^24 + x^23 + w*x^22 + w^2*x^21 + x^20 + w*x^19 + w*x^18 + x^15 + w*x^14 + x^13 + x^12 + w^2*x^10 + w^2*x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + w^2*x^3 + w*x^2 + 1
stabilizer matrix:
[1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1|1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0]
[0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0]
[0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1|0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1]
[0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 1]
[0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0|0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 0 1 1 0]
[0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1|0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1|0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 0 1 1]
[0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0]
[0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 0 0 1 0 0|0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1]
[0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 0 1|0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 0 1]
[0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 1]
[0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1|0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 0]
[0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 0 0]
[0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0|0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0|0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0|0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 1]
last modified: 2020-08-24
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024