Bounds on the minimum distance of additive quantum codes
Bounds on [[76,37]]2
| lower bound: | 9 |
| upper bound: | 13 |
Construction
Construction of a [[76,37,9]] quantum code:
[1]: [74, 19] Linear Code over GF(2^2)
QuasiTwistedCyclicCode of length 74 and constant w^2 stacked to heigth 2 with generators: x^19 + x^18 + w^2*x^17 + x^15 + x^13 + w*x^12 + w^2*x^11 + w*x^10 + x^9 + w^2*x^8 + w^2*x^7 + w^2*x^6 + w*x^4 + w^2*x^2 + w*x + w^2, w*x^35 + w^2*x^34 + w^2*x^32 + x^31 + w^2*x^29 + w^2*x^27 + x^26 + w^2*x^24 + w^2*x^23 + w*x^22 + w*x^21 + w*x^20 + w^2*x^19 + w^2*x^18 + w*x^17 + w*x^16 + w^2*x^14 + x^10 + w*x^8 + x^6 + w^2*x^4 + w*x^3 + w*x^2 + w^2*x + 1, 0, x^36 + w^2*x^35 + w*x^34 + x^33 + w^2*x^32 + w*x^31 + x^30 + w^2*x^29 + w*x^28 + x^27 + w^2*x^26 + w*x^25 + x^24 + w^2*x^23 + w*x^22 + x^21 + w^2*x^20 + w*x^19 + x^18 + w^2*x^17 + w*x^16 + x^15 + w^2*x^14 + w*x^13 + x^12 + w^2*x^11 + w*x^10 + x^9 + w^2*x^8 + w*x^7 + x^6 + w^2*x^5 + w*x^4 + x^3 + w^2*x^2 + w*x + 1
[2]: [[75, 37, 9]] quantum code over GF(2^2)
QuantumConstructionX applied to [1] with e = 1
[3]: [[76, 37, 9]] quantum code over GF(2^2)
ExtendCode [2] by 1
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 1 0 0|1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0|0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0|0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 0|0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0|0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 1 1 1 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0|0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0|0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0|0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0|0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
last modified: 2024-06-07
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024