Bounds on the minimum distance of additive quantum codes
Bounds on [[53,37]]2
| lower bound: | 4 |
| upper bound: | 6 |
Construction
Construction of a [[53,37,4]] quantum code:
[1]: [[85, 69, 4]] quantum code over GF(2^2)
QuasiCyclicCode of length 85 with generating polynomials: w*x^16 + x^13 + w*x^12 + w^2*x^11 + w*x^10 + w*x^9 + x^8 + w^2*x^7 + w*x^6 + w^2*x^5 + w*x^4 + w^2*x^3 + w^2*x^2 + w^2, w^2*x^16 + x^15 + w*x^14 + w*x^11 + w*x^10 + w*x^9 + x^8 + x^6 + w*x^4 + w*x^3 + x + w^2, w^2*x^16 + w^2*x^14 + w^2*x^12 + w^2*x^11 + w*x^10 + w^2*x^9 + w*x^8 + x^7 + w*x^6 + w^2*x^5 + w^2*x^4 + w^2*x^3 + w*x^2 + 1, x^15 + x^10 + w*x^8 + w*x^6 + w*x^5 + w*x^3 + w*x^2 + w, w*x^16 + w^2*x^12 + x^9 + x^8 + w^2*x^7 + w^2*x^6 + w*x^4 + x^3 + x + w^2
[2]: [[53, 37, 4]] quantum code over GF(2^2)
Shortening of [1] at { 2, 4, 7, 12, 15, 17, 20, 21, 22, 26, 28, 31, 33, 38, 43, 44, 46, 47, 49, 50, 54, 55, 57, 58, 60, 61, 66, 69, 70, 73, 82, 85 }
stabilizer matrix:
[1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1|0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1]
[0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1|1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0]
[0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1|0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0|0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 1]
[0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0|0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1]
[0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1|0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1]
[0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0|0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1|0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 1]
[0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1|0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 1 0 1]
[0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 1 0 1|0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0]
[0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1|0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 1 1 1 0 0]
[0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 1 1 1 0 0|0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1]
[0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1]
[0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1|0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1]
[0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0|0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1|0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1]
last modified: 2006-04-03
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024