Bounds on the minimum distance of additive quantum codes

Bounds on [[64,36]]2

lower bound:8
upper bound:10

Construction

Construction type: EzermanGrasslLingOzbudakOzkaya

Construction of a [[64,36,8]] quantum code:
[1]:  [63, 14 : 28] GF(2)-additive Code over GF(2^2)
     additive QuasiCyclicCode of length 63 stacked to height 2 with generating polynomials: x^59 + w^2*x^58 + w^2*x^57 + x^56 + x^55 + x^53 + w*x^51 + w^2*x^48 + x^47 + x^43 + w*x^42 + w*x^41 + w^2*x^40 + w*x^38 + w^2*x^37 + w*x^36 + w^2*x^35 + w^2*x^34 + x^33 + x^31 + w^2*x^25 + w^2*x^24 + w^2*x^21 + w*x^19 + x^18 + w*x^17 + w*x^16 + w*x^15 + w^2*x^14 + w^2*x^13 + x^12 + x^11 + x^10 + w^2*x^9 + w^2*x^8 + w^2*x^6 + w^2*x^5 + x^4 + x^3 + w*x + w^2,  x^62 + x^59 + w^2*x^58 + w^2*x^57 + x^56 + w*x^52 + w^2*x^51 + w*x^50 + w*x^49 + w^2*x^48 + w*x^47 + w*x^46 + w^2*x^45 + x^44 + w^2*x^43 + w^2*x^42 + x^41 + x^40 + w*x^39 + w*x^37 + w^2*x^36 + w*x^35 + w*x^34 + w*x^33 + w^2*x^32 + w*x^31 + x^30 + x^28 + x^26 + w*x^23 + w^2*x^22 + w^2*x^21 + w^2*x^20 + x^19 + x^18 + w*x^17 + x^16 + x^15 + w^2*x^14 + w^2*x^13 + w^2*x^12 + x^10 + w^2*x^9 + w*x^8 + w^2*x^7 + w^2*x^5 + w^2*x^4 + w^2*x^2 + 1
[2]:  [[64, 36, 8]] quantum code over GF(2^2)
     QuantumConstructionX applied to [1] with e = 1

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1|1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1]
      [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0|0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0]
      [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1|0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0]
      [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1|0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1]
      [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 0 1|0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0]
      [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1|0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0]
      [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1|0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1]
      [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0|0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1]
      [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0|0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1|0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0|0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 1]

last modified: 2024-06-16

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024