Bounds on the minimum distance of additive quantum codes

Bounds on [[57,35]]2

lower bound:5
upper bound:8

Construction

Construction of a [[57,35,5]] quantum code:
[1]:  [[87, 59, 6]] quantum code over GF(2^2)
     QuasiCyclicCode of length 87 with generating polynomials: x^28 + w*x^27 + x^26 + w*x^24 + w^2*x^22 + w*x^20 + w*x^19 + w*x^18 + w*x^17 + w*x^16 + w^2*x^15 + x^14 + w*x^12 + w*x^11 + x^10 + x^9 + w*x^7 + w*x^6 + w*x^5 + w^2*x^4 + w*x^3 + w*x^2 + x + w^2,  x^27 + w^2*x^24 + w*x^23 + x^22 + x^20 + w^2*x^17 + x^16 + w^2*x^14 + w^2*x^13 + w*x^12 + w^2*x^11 + w^2*x^10 + x^9 + w*x^8 + w*x^6 + w*x^5 + x^4 + w^2*x^3 + w*x + w^2,  w^2*x^28 + x^27 + w^2*x^25 + x^24 + w^2*x^23 + w*x^21 + w^2*x^20 + w^2*x^19 + x^18 + w*x^16 + x^14 + w^2*x^13 + w*x^12 + w*x^10 + x^9 + w^2*x^8 + w^2*x^7 + w*x^6 + x^5 + x^4 + x^3 + x^2 + w*x + 1
[2]:  [[84, 62, 5]] quantum code over GF(2^2)
     Shortening of the stabilizer code of [1] at { 3, 24, 30 }
[3]:  [[57, 35, 5]] quantum code over GF(2^2)
     Shortening of [2] at { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 }

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 1 0|1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 0 1 0]
      [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 0 0|0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0]
      [0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0|0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1]
      [0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0|0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0]
      [0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0|0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0]
      [0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 0|0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0]
      [0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1|0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0]
      [0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1|0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1|0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0|0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1]

last modified: 2006-04-03

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024