Bounds on the minimum distance of additive quantum codes
Bounds on [[57,35]]2
| lower bound: | 5 |
| upper bound: | 8 |
Construction
Construction of a [[57,35,5]] quantum code:
[1]: [[87, 59, 6]] quantum code over GF(2^2)
QuasiCyclicCode of length 87 with generating polynomials: x^28 + w*x^27 + x^26 + w*x^24 + w^2*x^22 + w*x^20 + w*x^19 + w*x^18 + w*x^17 + w*x^16 + w^2*x^15 + x^14 + w*x^12 + w*x^11 + x^10 + x^9 + w*x^7 + w*x^6 + w*x^5 + w^2*x^4 + w*x^3 + w*x^2 + x + w^2, x^27 + w^2*x^24 + w*x^23 + x^22 + x^20 + w^2*x^17 + x^16 + w^2*x^14 + w^2*x^13 + w*x^12 + w^2*x^11 + w^2*x^10 + x^9 + w*x^8 + w*x^6 + w*x^5 + x^4 + w^2*x^3 + w*x + w^2, w^2*x^28 + x^27 + w^2*x^25 + x^24 + w^2*x^23 + w*x^21 + w^2*x^20 + w^2*x^19 + x^18 + w*x^16 + x^14 + w^2*x^13 + w*x^12 + w*x^10 + x^9 + w^2*x^8 + w^2*x^7 + w*x^6 + x^5 + x^4 + x^3 + x^2 + w*x + 1
[2]: [[84, 62, 5]] quantum code over GF(2^2)
Shortening of the stabilizer code of [1] at { 3, 24, 30 }
[3]: [[57, 35, 5]] quantum code over GF(2^2)
Shortening of [2] at { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 }
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 1 0|1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 0 1 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 0 0|0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0|0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1]
[0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0|0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0]
[0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0|0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 0|0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1|0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1|0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1|0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0|0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1]
last modified: 2006-04-03
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024