Bounds on the minimum distance of additive quantum codes
Bounds on [[56,34]]2
| lower bound: | 6 |
| upper bound: | 8 |
Construction
Construction type: EzermanGrasslLingOzbudakOzkaya
Construction of a [[56,34,6]] quantum code:
[1]: [55, 11 : 22] GF(2)-additive Code over GF(2^2)
additive QuasiCyclicCode of length 55 stacked to height 2 with generating polynomials: w*x^52 + w*x^50 + w*x^46 + w*x^39 + w*x^37 + w*x^35 + w^2*x^34 + x^33 + w^2*x^31 + x^29 + x^27 + w*x^26 + x^24 + x^21 + w*x^20 + w*x^19 + w*x^17 + x^16 + w^2*x^15 + w*x^12 + x^11 + x^8 + w^2*x^6 + x^5 + w*x^4 + x^3 + 1, w*x^54 + w*x^53 + w*x^52 + w*x^51 + w*x^50 + w*x^49 + w*x^48 + w*x^47 + w*x^46 + w*x^45 + w*x^44 + w*x^43 + w*x^42 + w*x^41 + w*x^40 + w*x^39 + w*x^38 + w*x^37 + w*x^36 + w*x^35 + w*x^34 + w*x^33 + w*x^32 + w*x^31 + w*x^30 + w*x^29 + w*x^28 + w*x^27 + w*x^26 + w*x^25 + w*x^24 + w*x^23 + w*x^22 + w*x^21 + w*x^20 + w*x^19 + w*x^18 + w*x^17 + w*x^16 + w*x^15 + w*x^14 + w*x^13 + w*x^12 + w*x^11 + w*x^10 + w*x^9 + w*x^8 + w*x^7 + w*x^6 + w*x^5 + w*x^4 + w*x^3 + w*x^2 + w*x + w
[2]: [[56, 34, 6]] quantum code over GF(2^2)
QuantumConstructionX applied to [1] with e = 1
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1|0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 0|1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1]
[0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1|0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 1|0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 1|0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0]
[0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1]
[0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0 1|0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0]
[0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1|0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1]
[0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1|0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0|0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1]
[0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0|0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0]
[0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1|0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1]
[0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1|0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1|0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1 1]
last modified: 2024-05-14
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024