Bounds on the minimum distance of additive quantum codes

Bounds on [[56,34]]2

lower bound:6
upper bound:8

Construction

Construction type: EzermanGrasslLingOzbudakOzkaya

Construction of a [[56,34,6]] quantum code:
[1]:  [55, 11 : 22] GF(2)-additive Code over GF(2^2)
     additive QuasiCyclicCode of length 55 stacked to height 2 with generating polynomials: w*x^52 + w*x^50 + w*x^46 + w*x^39 + w*x^37 + w*x^35 + w^2*x^34 + x^33 + w^2*x^31 + x^29 + x^27 + w*x^26 + x^24 + x^21 + w*x^20 + w*x^19 + w*x^17 + x^16 + w^2*x^15 + w*x^12 + x^11 + x^8 + w^2*x^6 + x^5 + w*x^4 + x^3 + 1,  w*x^54 + w*x^53 + w*x^52 + w*x^51 + w*x^50 + w*x^49 + w*x^48 + w*x^47 + w*x^46 + w*x^45 + w*x^44 + w*x^43 + w*x^42 + w*x^41 + w*x^40 + w*x^39 + w*x^38 + w*x^37 + w*x^36 + w*x^35 + w*x^34 + w*x^33 + w*x^32 + w*x^31 + w*x^30 + w*x^29 + w*x^28 + w*x^27 + w*x^26 + w*x^25 + w*x^24 + w*x^23 + w*x^22 + w*x^21 + w*x^20 + w*x^19 + w*x^18 + w*x^17 + w*x^16 + w*x^15 + w*x^14 + w*x^13 + w*x^12 + w*x^11 + w*x^10 + w*x^9 + w*x^8 + w*x^7 + w*x^6 + w*x^5 + w*x^4 + w*x^3 + w*x^2 + w*x + w
[2]:  [[56, 34, 6]] quantum code over GF(2^2)
     QuantumConstructionX applied to [1] with e = 1

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1|0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 0|1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1]
      [0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1|0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0]
      [0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 1|0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 1|0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0]
      [0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1]
      [0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0 1|0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0]
      [0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1|0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1]
      [0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1|0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0|0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1]
      [0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0|0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0]
      [0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1|0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1|0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1|0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1 1]

last modified: 2024-05-14

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024