Bounds on the minimum distance of additive quantum codes
Bounds on [[76,33]]2
| lower bound: | 9 |
| upper bound: | 15 |
Construction
Construction of a [[76,33,9]] quantum code:
[1]: [[74, 36, 9]] quantum code over GF(2^2)
QuasiTwistedCyclicCode of length 74 and constant w^2 with generators: x^18 + x^17 + w*x^16 + x^15 + x^14 + w^2*x^13 + w^2*x^12 + w^2*x^11 + w^2*x^10 + x^9 + x^8 + w*x^7 + w^2*x^6 + x^5 + w^2*x^4 + x^3 + w^2*x^2 + w^2*x + 1, w^2*x^36 + w*x^35 + w^2*x^34 + w^2*x^33 + w^2*x^32 + w^2*x^31 + x^30 + x^29 + w*x^28 + w*x^27 + w^2*x^25 + x^22 + w*x^21 + x^19 + w*x^17 + w*x^16 + w*x^15 + w^2*x^14 + w^2*x^13 + x^12 + x^11 + x^9 + w^2*x^8 + w^2*x^7 + x^6 + w^2*x^5 + w^2*x^2 + w*x + w^2
[2]: [[74, 33, 9]] quantum code over GF(2^2)
Subcode of [1]
[3]: [[76, 33, 9]] quantum code over GF(2^2)
ExtendCode [2] by 2
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 1 0 0|1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0|0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0 0|0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0|0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 1 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 0|0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0|0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0|0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
last modified: 2024-06-07
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024