Bounds on the minimum distance of additive quantum codes

Bounds on [[55,33]]2

lower bound:5
upper bound:8

Construction

Construction of a [[55,33,5]] quantum code:
[1]:  [[58, 30, 6]] quantum code over GF(2^2)
     QuasiCyclicCode of length 58 with generating polynomials: w*x^27 + x^26 + w*x^25 + x^24 + w^2*x^23 + x^21 + x^19 + w^2*x^17 + w^2*x^16 + w*x^15 + x^14 + x^13 + w*x^11 + w^2*x^8 + w^2*x^5 + x^3 + x^2 + w^2,  w^2*x^28 + w^2*x^27 + w*x^26 + x^24 + w^2*x^23 + x^22 + x^20 + x^19 + w^2*x^18 + w*x^17 + w*x^14 + x^13 + w^2*x^12 + w*x^9 + w*x^8 + w*x^7 + x^6 + w*x^4 + w*x^3 + w^2*x
[2]:  [[55, 33, 5]] quantum code over GF(2^2)
     Shortening of the stabilizer code of [1] at { 1, 4, 30 }

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0|1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0]
      [0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0|0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0]
      [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0|0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1]
      [0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1|0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1]
      [0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1|0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1]
      [0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0|0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0]
      [0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1|0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1]
      [0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0|0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0]
      [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1|0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1|0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0]

last modified: 2006-04-03

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024