Bounds on the minimum distance of additive quantum codes
Bounds on [[63,31]]2
| lower bound: | 8 |
| upper bound: | 11 |
Construction
Construction type: GuanLiLuYao
Construction of a [[63,31,8]] quantum code:
[1]: [[63, 31, 8]] quantum code over GF(2^2)
cyclic code of length 63 with generating polynomial w^2*x^60 + w*x^59 + w*x^58 + x^57 + x^56 + w*x^55 + w*x^53 + x^51 + x^49 + w*x^46 + w^2*x^45 + x^43 + w^2*x^42 + w^2*x^39 + x^37 + w^2*x^36 + x^34 + x^33 + w^2*x^32 + x^31 + w^2*x^30 + x^29 + w*x^28 + w^2*x^27 + w^2*x^25 + w*x^24 + x^23 + x^21 + w^2*x^19 + w*x^17 + w*x^15 + w*x^12
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0|1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1|0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0|0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 1]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 0|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1|0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 0 0 1 0|0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1|0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 0 1 0 0 1 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1|0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1|0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1|0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1]
last modified: 2022-08-02
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024