Bounds on the minimum distance of additive quantum codes

Bounds on [[56,27]]2

lower bound:7
upper bound:10

Construction

Construction of a [[56,27,7]] quantum code:
[1]:  [52, 13] Quasicyclic of degree 4 Linear Code over GF(2^2)
     QuasiCyclicCode of length 52 stacked to height  2 with generating polynomials: x + 1,  w*x^8 + x^7 + x^5 + w*x^2 + w*x + w,  x^12 + w^2*x^10 + x^8 + w^2*x^7 + w*x^5 + w*x^4 + w*x^3 + w*x^2 + w*x + w,  w*x^12 + w^2*x^9 + w*x^8 + w*x^7 + w^2*x^6 + x^5 + w^2*x^4 + w^2*x^2 + w*x + 1,  0,  x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1,  w*x^12 + w*x^11 + w*x^10 + w*x^9 + w*x^8 + w*x^7 + w*x^6 + w*x^5 + w*x^4 + w*x^3 + w*x^2 + w*x + w,  w*x^12 + w*x^11 + w*x^10 + w*x^9 + w*x^8 + w*x^7 + w*x^6 + w*x^5 + w*x^4 + w*x^3 + w*x^2 + w*x + w
[2]:  [[53, 27, 7]] quantum code over GF(2^2)
     QuantumConstructionX applied to [1] with e = 1
[3]:  [[56, 27, 7]] quantum code over GF(2^2)
     ExtendCode [2] by 3

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0|1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 0]
      [0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0|0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0]
      [0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 0|0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0]
      [0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0|0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 0 0 0]
      [0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0|0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0|0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0]
      [0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 1 0 0 0|0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0]
      [0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0|0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 0|0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

last modified: 2024-06-15

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024