Bounds on the minimum distance of additive quantum codes

Bounds on [[41,25]]2

lower bound:5
upper bound:6

Construction

Construction type: EzermanGrasslLingOzbudakOzkaya

Construction of a [[41,25,5]] quantum code:
[1]:  [39, 8, 21] Quasicyclic of degree 3 Linear Code over GF(2^2)
     QuasiCyclicCode of length 39 stacked to height  2 with generating polynomials: x^6 + w*x^5 + w^2*x^3 + w*x + 1,  w^2*x^11 + w^2*x^10 + x^9 + w^2*x^8 + w^2*x^7 + w*x^6 + x^5 + w*x^4 + x^3 + x,  w^2*x^11 + w*x^10 + w^2*x^8 + w^2*x^7 + w*x^6 + x^4 + w^2*x^2,  0,  x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1,  w^2*x^12 + w^2*x^11 + w^2*x^10 + w^2*x^9 + w^2*x^8 + w^2*x^7 + w^2*x^6 + w^2*x^5 + w^2*x^4 + w^2*x^3 + w^2*x^2 + w^2*x + w^2
[2]:  [[41, 25, 5]] quantum code over GF(2^2)
     QuantumConstructionX applied to [1] with e = 2

    stabilizer matrix:

      [1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1|0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 1 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 1 0 0 0 1 1|1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0]
      [0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0|0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0]
      [0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0|0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0 0 0]
      [0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 1 1|0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1]
      [0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1|0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0]
      [0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0|0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1]
      [0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1|0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1]
      [0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1|0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0]
      [0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0|0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1]
      [0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0|0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 0 1 0]
      [0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 0 1 0|0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0]
      [0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 0 0 1 0|0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0|0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

last modified: 2024-06-13

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024