Bounds on the minimum distance of additive quantum codes
Bounds on [[53,24]]2
| lower bound: | 8 |
| upper bound: | 10 |
Construction
Construction of a [[53,24,8]] quantum code:
[1]: [51, 14 : 28, 17] GF(2)-additive Code over GF(2^2)
additive QuasiCyclicCode of length 51 stacked to height 2 with generating polynomials: w^2*x^49 + w^2*x^47 + w^2*x^46 + x^44 + x^43 + w^2*x^42 + w*x^41 + w*x^39 + w*x^38 + x^36 + x^35 + w*x^33 + x^32 + w^2*x^31 + x^29 + w*x^28 + w*x^26 + w^2*x^25 + w*x^23 + x^22 + w^2*x^21 + x^20 + w*x^18 + w^2*x^17 + w*x^15 + w*x^13 + 1, x^50 + w*x^49 + w^2*x^47 + x^46 + w^2*x^45 + x^43 + w^2*x^42 + w^2*x^41 + w*x^40 + w*x^39 + w^2*x^37 + x^35 + w*x^34 + w*x^32 + w^2*x^31 + x^30 + w^2*x^28 + x^26 + w*x^23 + w*x^22 + w*x^20 + w*x^18 + x^17 + w^2*x^16 + x^15 + w*x^13 + w
[2]: [[52, 24, 8]] quantum code over GF(2^2)
QuantumConstructionX applied to [1] with e = 1
[3]: [[53, 24, 8]] quantum code over GF(2^2)
ExtendCode [2] by 1
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 1 1 0|1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0|0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 1 1 1 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0|0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0 0 0|0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0 0|0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0|0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0|0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0|0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 1 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0|0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
last modified: 2024-05-06
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024