Bounds on the minimum distance of additive quantum codes
Bounds on [[22,2]]2
| lower bound: | 7 |
| upper bound: | 8 |
Construction
Construction type: DastbastehShivj
Construction of a [[22,2,7]] quantum code:
[1]: [21, 10 : 20, 7] GF(2)-additive Code over GF(2^2)
additive cyclic code of length 21 with generating polynomial w*x^20 + x^19 + x^17 + x^16 + w*x^15 + w^2*x^12 + x^11 + x^10 + w
[2]: [[22, 2, 7]] quantum code over GF(2^2)
QuantumConstructionX applied to [1] with e = 1
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1|0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 1|1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0]
[0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 0|0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1]
[0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1|0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0|0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 1]
[0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1]
[0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0|0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0]
[0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0|0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0]
[0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1|0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0|0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1]
[0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1|0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1|0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0|0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1]
last modified: 2024-05-06
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024