Bounds on the minimum distance of additive quantum codes

Bounds on [[49,17]]2

lower bound:8
upper bound:12

Construction

Construction type: EzermanGrasslLingOzbudakOzkaya

Construction of a [[49,17,8]] quantum code:
[1]:  [45, 16] Quasicyclic of degree 3 Linear Code over GF(2^2)
     QuasiCyclicCode of length 45 stacked to height  2 with generating polynomials: x^3 + x^2 + w,  x^9 + w*x^7 + x^6 + w^2*x^3 + w^2*x^2 + x,  x^14 + w*x^13 + x^12 + w^2*x^10 + w*x^9 + x^6 + x^5 + x^4 + w*x^3 + w^2*x^2 + w*x + 1,  0,  x^11 + x^8 + w*x^7 + x^5 + w^2*x^3 + x^2 + w*x + w^2,  w^2*x^14 + w^2*x^13 + x^12 + w^2*x^11 + w*x^10 + x^8 + w^2*x^7 + w^2*x^6 + x^5 + x^4 + w*x^3 + w^2*x
[2]:  [[49, 17, 8]] quantum code over GF(2^2)
     QuantumConstructionX applied to [1] with e = 4

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1|1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1]
      [0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1|0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1]
      [0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1|0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0]
      [0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1|0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1]
      [0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1|0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1]
      [0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0|0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1]
      [0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1|0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1]
      [0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1|0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1]
      [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0|0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1]
      [0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 1]

last modified: 2024-06-15

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024