Bounds on the minimum distance of additive quantum codes
Bounds on [[52,16]]2
| lower bound: | 10 |
| upper bound: | 13 |
Construction
Construction type: DastbastehShivj
Construction of a [[52,16,10]] quantum code:
[1]: [51, 18 : 36, 17] GF(2)-additive Code over GF(2^2)
additive QuasiCyclicCode of length 51 stacked to height 2 with generating polynomials: x^50 + x^49 + w^2*x^48 + w^2*x^46 + w*x^45 + w^2*x^44 + w^2*x^42 + w^2*x^41 + w*x^40 + w^2*x^39 + w^2*x^38 + w^2*x^37 + x^35 + w*x^32 + x^31 + w^2*x^29 + x^26 + w^2*x^25 + w^2*x^24 + x^23 + x^22 + x^21 + x^20 + w^2*x^19 + x^18 + x^17 + 1, x^50 + w^2*x^49 + w^2*x^48 + w^2*x^47 + w*x^46 + w^2*x^45 + w*x^44 + w^2*x^43 + w^2*x^41 + w*x^40 + x^39 + w^2*x^38 + w*x^37 + x^36 + x^35 + w*x^34 + w*x^33 + w*x^32 + x^31 + x^29 + w*x^28 + x^27 + w*x^25 + w*x^24 + x^23 + w^2*x^21 + w*x^20 + x^19 + x^18 + x^17 + w
[2]: [[52, 16, 10]] quantum code over GF(2^2)
QuantumConstructionX applied to [1] with e = 1
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1|1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0|0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 1]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1|0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1|0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 1]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1|0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0|0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1|0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0 1]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0|0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1]
last modified: 2024-05-06
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024