Bounds on the minimum distance of additive quantum codes
Bounds on [[29,15]]2
| lower bound: | 5 |
| upper bound: | 5 |
Construction
Construction type: EzermanGrasslLingOzbudakOzkaya
Construction of a [[29,15,5]] quantum code:
[1]: [28, 7, 15] Quasicyclic of degree 4 Linear Code over GF(2^2)
QuasiCyclicCode of length 28 with generating polynomials: 1, w*x^6 + x^5 + w^2*x^4 + w^2*x^3 + w*x^2 + x + 1, w*x^6 + w*x^5 + w^2*x^4 + x^3 + x^2 + w*x + w, w^2*x^6 + w*x^5 + w^2*x^4 + w*x^3 + w*x + w
[2]: [[29, 15, 5]] quantum code over GF(2^2)
QuantumConstructionX applied to [1] with e = 1
stabilizer matrix:
[1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 1|0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0]
[0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0|1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1]
[0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1|0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0]
[0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0|0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1]
[0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1|0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0]
[0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0|0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1]
[0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1|0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0]
[0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0|0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1]
[0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1|0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0]
[0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0|0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1]
[0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1|0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0]
[0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0|0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1]
[0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1|0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0]
[0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0|0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1]
last modified: 2024-06-15
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024