| lower bound: | 4 |
| upper bound: | 4 |
Construction of a [[27,15,4]] quantum code:
[1]: [[40, 30, 4]] quantum code over GF(2^2)
QuasiCyclicCode of length 40 stacked to height 2 with generating polynomials: 1, w^2*x^4 + w*x^3 + w^2*x^2 + w*x + w^2, x^4 + w^2*x^2 + w^2*x + w^2, x^4 + w*x^3 + x^2, w*x^4 + x^3 + w^2*x, w*x^4 + x^3 + x^2 + x, w^2*x^4 + x^2 + w*x, x^4 + w^2*x^3 + w^2*x^2 + x + 1, w, x^4 + w^2*x^3 + x^2 + w^2*x + 1, w*x^4 + x^2 + x + 1, w*x^4 + w^2*x^3 + w*x^2, w^2*x^4 + w*x^3 + x, w^2*x^4 + w*x^3 + w*x^2 + w*x, x^4 + w*x^2 + w^2*x, w*x^4 + x^3 + x^2 + w*x + w
[2]: [[24, 14, 4]] quantum code over GF(2^2)
Shortening of [1] at { 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 28, 30, 31, 34 }
[3]: [[25, 14, 4]] quantum code over GF(2^2)
ExtendCode [2] by 1
[4]: [[27, 14, 4]] quantum code over GF(2^2)
ExtendCode [3] by 2
stabilizer matrix:
[1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0|0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0|1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0]
[0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 0 0 0|0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0|0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0]
[0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0|0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 0]
[0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 0|0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0]
[0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0|0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0]
[0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0|0 0 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0]
[0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0|0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0|0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
last modified: 2005-06-24
The upper bound was shown in
Ching-Yi Lai and Alexei Ashikhmin,
"Linear Programming Bounds for Entanglement-Assisted Quantum Error-Correcting Codes by Split Weight Enmerators,"
IEEE Transactions on Information Theory, 64(1):622-639 (2018).
DOI: 10.1109/TIT.2017.2711601