| lower bound: | 5 |
| upper bound: | 5 |
Construction of a [[28,14,5]] quantum code:
[1]: [[28, 14, 5]] quantum code over GF(2^2)
Construction from a stored generator matrix
stabilizer matrix:
[1 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 0|0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1]
[0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1|1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1]
[0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0|0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1]
[0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1|0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1]
[0 0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 0 1|0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1]
[0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1|0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0]
[0 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 0 1 0|0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1]
[0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1|0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1]
[0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 0 1|0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1]
[0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1|0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0]
[0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0|0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1]
[0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1|0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1]
[0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 0 1|0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0]
[0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0|0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1]
last modified: 2020-09-18
The upper bound was shown in
Ching-Yi Lai and Alexei Ashikhmin,
"Linear Programming Bounds for Entanglement-Assisted Quantum Error-Correcting Codes by Split Weight Enmerators,"
IEEE Transactions on Information Theory, 64(1):622-639 (2018).
DOI: 10.1109/TIT.2017.2711601