Bounds on the minimum distance of additive quantum codes
Bounds on [[27,13]]2
| lower bound: | 5 |
| upper bound: | 5 |
Construction
Construction type: Tonchev
Construction of a [[27,13,5]] quantum code:
[1]: [[27, 13, 5]] quantum code over GF(2^2)
V. D. Tonchev, Quantum codes from caps, Disc. Math.(2008)
Construction from a stored generator matrix
stabilizer matrix:
[1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 1|0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 0]
[0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 0|1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1]
[0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1|0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1]
[0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1|0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0]
[0 0 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1 1 1 0|0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0|0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 0 0]
[0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1|0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1|0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0]
[0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0|0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 0 1 0]
[0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 0 1 0|0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0]
[0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 0 1 1 1 0|0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1]
[0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1|0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1]
[0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1|0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 1 0 1]
[0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 1 0 1|0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 0 0 0 0 0]
last modified: 2008-10-03
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024