## Bounds on the minimum distance of linear codes

### Bounds on linear codes [188,9] over GF(4)

 lower bound: 127 upper bound: 134

### Construction

Construction type: Maruta

```Construction of a linear code [188,9,127] over GF(4):
[1]:  [188, 9, 127] Linear Code over GF(2^2)
code found by Tatsuya Maruta
Construction from a stored generator matrix:

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, w, w^2, 1, w, 0, w^2, 0, w, w^2, 0, w^2, w, w^2, 1, w, 1, 1, w, w, 0, w^2, w^2, 0, 0, w, 1, 0, w^2, 1, 0, 0, 1, 1, 1, 0, 1, 1, w^2,
0, w^2, 1, 1, w^2, 1, 0, w, w, 1, w^2, 1, w, w^2, w^2, w, 0, 1, 1, w, 1, 0, 1, w^2, w, w^2, 0, 0, w, w, 1, w^2, 1, w^2, 0, 0, w^2, 0, 1, w^2, 0, w, 0, 0, 0, w,
0, 1, w^2, 0, 1, 0, 0, 1, w^2, 1, w^2, w, w, 0, 0, 1, w, 1, w^2, 0, w^2, w, w^2, w^2, 0, w, 1, 1, w, w^2, 1, w^2, w, w, 0, w^2, 1, w^2, w^2, 1, 0, 1, w^2, w^2,
0, w^2, w^2, w^2, 0, 0, w^2, 1, 0, w^2, w, 0, 0, 1, 1, 0, w, w, w^2, w^2, w, w^2, 1, w, 1, 0, 1, w, 0, 1, 0, w, w^2, 1, w^2, 0, 0, 1, w, w^2, w^2, 0, w, 1, 0,
w, 0, 0, w^2, w^2, 0 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, w, w, w^2, 1, 0, w^2, w, w, 0, 0, 0, 1, w, 0, w^2, w, w, 1, w^2, 0, 1, 1, 1, w, 0, 1, 0, w^2, w, w, 1, w^2, w, w^2,
w^2, w, 0, w, w^2, 0, 1, 1, w^2, 1, w^2, 0, 0, 0, 1, w, w, w^2, w, 0, 1, 1, w^2, w^2, w, 0, w^2, 0, 1, w^2, 1, w^2, 0, w^2, w^2, 0, w, w^2, w^2, w^2, w^2, 1, w,
0, 0, 1, w, w^2, w^2, w^2, w^2, 1, 0, w^2, w^2, 0, w^2, w, w^2, w, 0, w^2, 0, 1, w^2, w^2, w, w, 0, 1, w^2, 1, 1, w, 0, 0, 0, w^2, w, w^2, w, w, 0, w^2, 1, 0,
1, w^2, w^2, 1, w^2, w, 1, 1, w^2, 0, w, 0, 1, w, w, w, 0, w^2, w, 1, 1, w^2, 0, 1, w, 0, 0, 0, 1, 1, w^2, 0, w, w^2, 1, 1, 0, 0, 0, w^2, 0, w^2, 0, 0, 1, w^2,
1, 1, 1, 1, w, 0, w, 1, w^2 ]
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, w, w, w^2, 1, 0, w^2, w, w, 0, 0, 0, 1, w, 0, w^2, w, w, 1, w^2, 0, 1, 1, 1, w, 0, 1, 0, w^2, w, w, 1, w^2, w, w^2,
w^2, w, 0, w, w^2, 0, 1, 1, w^2, 1, w^2, 0, 0, 0, 1, w, w, w^2, w, 0, 1, 1, w^2, w^2, w, 0, w^2, 0, 1, w^2, 1, w^2, 0, w^2, w^2, 0, w, w^2, w^2, w^2, w^2, 1, w,
0, 0, 1, w, w^2, w^2, w^2, w^2, 1, 0, w^2, w^2, 0, w^2, w, w^2, w, 0, w^2, 0, 1, w^2, w^2, w, w, 0, 1, w^2, 1, 1, w, 0, 0, 0, w^2, w, w^2, w, w, 0, w^2, 1, 0,
1, w^2, w^2, 1, w^2, w, 1, 1, w^2, 0, w, 0, 1, w, w, w, 0, w^2, w, 1, 1, w^2, 0, 1, w, 0, 0, 0, 1, 1, w^2, 0, w, w^2, 1, 1, 0, w, 0, w^2, 0, w^2, 0, 0, 1, w^2,
1, 1, 1, 1, w, 0, w, 0 ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, w, w, w^2, 1, 0, w^2, w, w, 0, 0, 0, 1, w, 0, w^2, w, w, 1, w^2, 0, 1, 1, 1, w, 0, 1, 0, w^2, w, w, 1, w^2, w,
w^2, w^2, w, 0, w, w^2, 0, 1, 1, w^2, 1, w^2, 0, 0, 0, 1, w, w, w^2, w, 0, 1, 1, w^2, w^2, w, 0, w^2, 0, 1, w^2, 1, w^2, 0, w^2, w^2, 0, w, w^2, w^2, w^2, w^2,
1, w, 0, 0, 1, w, w^2, w^2, w^2, w^2, 1, 0, w^2, w^2, 0, w^2, w, w^2, w, 0, w^2, 0, 1, w^2, w^2, w, w, 0, 1, w^2, 1, 1, w, 0, 0, 0, w^2, w, w^2, w, w, 0, w^2,
1, 0, 1, w^2, w^2, 1, w^2, w, 1, 1, w^2, 0, w, 0, 1, w, w, w, 0, w^2, w, 1, 1, w^2, 0, 1, w, 0, 0, 0, 1, 1, w^2, 0, w, w^2, 1, 1, 1, w, 0, w^2, 0, w^2, 0, 0, 1,
w^2, 1, 1, 1, 1, w, 0, 0 ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, w, w^2, 0, 0, w, 0, w^2, 0, w^2, w^2, 1, 1, 1, w^2, w^2, w^2, 1, 0, w, w, 1, w, w, 0, 0, 0, w^2, w, 1, w, w^2, w, w^2, w^2, 1,
1, w^2, w^2, 0, 0, 0, 0, w^2, w, w, 1, w, w^2, 0, 0, 1, w, 1, 0, w, 1, w^2, 0, w, w^2, w^2, 0, 1, w^2, w, 1, w, w^2, w^2, 0, w^2, w^2, 0, 1, w^2, w^2, 0, w^2,
w, w^2, w^2, 1, w^2, 0, w^2, w^2, w, 0, w^2, w^2, 0, w^2, w^2, 1, w, 1, w^2, w, 0, w^2, w^2, 1, 0, w^2, w, 1, 0, w, 1, w, 0, 0, w^2, 1, w, 1, 1, w^2, 0, 0, 0,
0, w^2, w^2, w, w, w^2, w^2, 1, w^2, 1, w, 1, w^2, 0, 0, 0, 1, 1, w, 1, 1, 0, w, w^2, w^2, w^2, w, w, w, w^2, w^2, 0, w^2, 0, 1, 0, 0, w^2, 1, w, 0, 1, w, w^2,
w, w, 1, 0, 1, w, w^2, 0, 1, 1, w^2, 0, w ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, w, w, w^2, 1, 0, w^2, w, w, 0, 0, 0, 1, w, 0, w^2, w, w, 1, w^2, 0, 1, 1, 1, w, 0, 1, 0, w^2, w, w, 1, w^2, w, w^2, w^2, w, 0, w,
w^2, 0, 1, 1, w^2, 1, w^2, 0, 0, 0, 1, w, w, w^2, w, 0, 1, 1, w^2, w^2, w, 0, w^2, 0, 1, w^2, 1, w^2, 0, w^2, w^2, 0, w, w^2, w^2, w^2, w^2, 1, w, 0, 0, 1, w,
w^2, w^2, w^2, w^2, 1, 0, w^2, w^2, 0, w^2, w, w^2, w, 0, w^2, 0, 1, w^2, w^2, w, w, 0, 1, w^2, 1, 1, w, 0, 0, 0, w^2, w, w^2, w, w, 0, w^2, 1, 0, 1, w^2, w^2,
1, w^2, w, 1, 1, w^2, 0, w, 0, 1, w, w, w, 0, w^2, w, 1, 1, w^2, 0, 1, w, 0, 0, 0, 1, 1, w^2, 0, w, w^2, 1, 1, 0, 0, 0, w, 0, 0, 0, 0, 1, w^2, 1, 1, 1, 1, w, 0,
w, 1, 0, 1, w, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, w, w, w^2, 1, 0, w^2, w, w, 0, 0, 0, 1, w, 0, w^2, w, w, 1, w^2, 0, 1, 1, 1, w, 0, 1, 0, w^2, w, w, 1, w^2, w, w^2, w^2, w, 0,
w, w^2, 0, 1, 1, w^2, 1, w^2, 0, 0, 0, 1, w, w, w^2, w, 0, 1, 1, w^2, w^2, w, 0, w^2, 0, 1, w^2, 1, w^2, 0, w^2, w^2, 0, w, w^2, w^2, w^2, w^2, 1, w, 0, 0, 1,
w, w^2, w^2, w^2, w^2, 1, 0, w^2, w^2, 0, w^2, w, w^2, w, 0, w^2, 0, 1, w^2, w^2, w, w, 0, 1, w^2, 1, 1, w, 0, 0, 0, w^2, w, w^2, w, w, 0, w^2, 1, 0, 1, w^2,
w^2, 1, w^2, w, 1, 1, w^2, 0, w, 0, 1, w, w, w, 0, w^2, w, 1, 1, w^2, 0, 1, w, 0, 0, 0, 1, 1, w^2, 0, w, w^2, 1, 1, 0, 0, 0, w, 0, w^2, 0, 0, 1, w^2, 1, 1, 1,
1, w, 0, w, 1, 0, 1, w, w ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, w, w, w^2, 1, 0, w^2, w, w, 0, 0, 0, 1, w, 0, w^2, w, w, 1, w^2, 0, 1, 1, 1, w, 0, 1, 0, w^2, w, w, 1, w^2, w, w^2, w^2, w,
0, w, w^2, 0, 1, 1, w^2, 1, w^2, 0, 0, 0, 1, w, w, w^2, w, 0, 1, 1, w^2, w^2, w, 0, w^2, 0, 1, w^2, 1, w^2, 0, w^2, w^2, 0, w, w^2, w^2, w^2, w^2, 1, w, 0, 0,
1, w, w^2, w^2, w^2, w^2, 1, 0, w^2, w^2, 0, w^2, w, w^2, w, 0, w^2, 0, 1, w^2, w^2, w, w, 0, 1, w^2, 1, 1, w, 0, 0, 0, w^2, w, w^2, w, w, 0, w^2, 1, 0, 1, w^2,
w^2, 1, w^2, w, 1, 1, w^2, 0, w, 0, 1, w, w, w, 0, w^2, w, 1, 1, w^2, 0, 1, w, 0, 0, 0, 1, 1, w^2, 0, w, w^2, 1, 1, 0, 0, 0, w, 0, w^2, 0, 0, 1, w^2, 1, 1, 1,
1, w, 0, w, 1, 0, 1, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, w, w^2, 1, 0, w, 0, 1, w, 0, w, 1, w, w^2, 1, w^2, w^2, 1, 1, 0, w, w, 0, 0, 1, w^2, 0, w, w^2, 0, 0, w^2, w^2, w^2, 0, w^2, w^2,
w, 0, w, w^2, w^2, w, w^2, 0, 1, 1, w^2, w, w^2, 1, w, w, 1, 0, w^2, w^2, 1, w^2, 0, w^2, w, 1, w, 0, 0, 1, 1, w^2, w, w^2, w, 0, 0, w, 0, w^2, w, 0, 1, 0, 0,
0, 1, 0, w^2, w, 0, w^2, 0, 0, w^2, w, w^2, w, 1, 1, 0, 0, w^2, 1, w^2, w, 0, w, 1, w, w, 0, 1, w^2, w^2, 1, w, w^2, w, 1, 1, 0, w, w^2, w, w, w^2, 0, w^2, w,
w, 0, w, w, w, 0, 0, w, w^2, 0, w, 1, 0, 0, w^2, w^2, 0, 1, 1, w, w, 1, w, w^2, 1, w^2, 0, w^2, 1, 0, w^2, 0, 1, w, w^2, 1, 0, 0, w^2, 1, w, w, 0, 1, w^2, 0, 1,
0, 0, w, w, w^2, 0 ] where w:=Root(x^2 + x + 1)[1,1];

```

### From Brouwer's table (as of 2007-02-13)

```Lb(188,9) = 127 MST

Ub(188,9) = 134 is found by considering shortening to:
Ub(187,8) = 134 is found by considering truncation to:
Ub(186,8) = 133 Da1
```
###### References
Da1: R.N. Daskalov, The linear programming bound for quaternary linear codes, pp. 74-77 in: Proceedings ACCT4'94, Novgorod, Russia, Sept. 11-17, 1994.

MST: T. Maruta, M. Shinohara & M. Takenaka, Constructing linear codes from some orbits of projectivities, to appear in Discr. Math.

### Notes

• All codes establishing the lower bounds were constructed using MAGMA.
• Upper bounds are taken from the tables of Andries E. Brouwer, with the exception of codes over GF(7) with n>50. For most of these codes, the upper bounds are rather weak. Upper bounds for codes over GF(7) with small dimension have been provided by Rumen Daskalov.
• Special thanks to John Cannon for his support in this project.
• A prototype version of MAGMA's code database over GF(2) was written by Tat Chan in 1999 and extended later that year by Damien Fisher. The current release version was developed by Greg White over the period 2001-2006.
• Thanks also to Allan Steel for his MAGMA support.
• My apologies to all authors that have contributed codes to this table for not giving specific credits.

• If you have found any code improving the bounds or some errors, please send me an e-mail:
codes [at] codetables.de

Homepage | New Query | Contact