| lower bound: | 48 |
| upper bound: | 49 |
Construction of a linear code [81,9,48] over GF(3):
[1]: [81, 9, 48] Quasicyclic of degree 27 Linear Code over GF(3)
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 2, 0, 0, 1, 1, 2, 1, 0, 2, 2, 0, 1, 0, 2, 1, 1, 2, 2, 0, 2, 1, 1, 2, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 2, 1, 1, 2, 1, 0, 0, 2, 2, 0, 1, 2, 1, 1, 1, 2, 0, 1, 0, 0, 2, 2 ]
[ 0, 1, 0, 0, 0, 1, 0, 2, 2, 0, 1, 0, 0, 0, 1, 0, 2, 2, 0, 1, 0, 0, 0, 1, 0, 2, 2, 0, 1, 0, 0, 0, 1, 0, 2, 2, 1, 2, 1, 1, 1, 2, 1, 0, 0, 2, 0, 2, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 2, 0, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 2 ]
[ 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 2, 0, 2, 2, 0, 2, 2, 0, 0, 0, 1, 2, 2, 0, 1, 1, 2, 1, 1, 2, 0, 0, 1, 2, 2, 0, 1, 1, 2, 0, 0, 1, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 2, 2, 0, 0, 0, 1, 1, 1, 2, 0, 0, 1, 1, 1, 2, 2, 2, 0 ]
[ 0, 0, 0, 1, 0, 2, 0, 1, 2, 0, 1, 2, 0, 0, 0, 1, 0, 2, 1, 0, 2, 0, 1, 2, 0, 0, 0, 0, 2, 1, 2, 0, 1, 2, 2, 2, 0, 0, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 1, 1, 2, 1, 0, 2, 0, 1, 2, 2, 2, 0, 2, 1, 2, 1, 0, 1, 2, 0, 1, 1, 1, 0, 0, 0, 1, 0, 2, 0, 1, 2 ]
[ 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 1, 2, 0, 2, 1, 2, 2, 2, 2, 0, 1, 2, 1, 0, 0, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 0, 2, 0, 1, 1, 0, 2, 2, 2, 2, 1, 2, 0, 0, 2, 1, 1, 1, 1, 2, 0, 1, 0, 2, 1, 1, 1, 1, 2, 0, 1, 0, 2, 1, 0, 0, 0, 1, 2, 0, 2, 1, 0 ]
[ 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 0, 1, 2, 1, 2, 0, 2, 1, 0, 2, 1, 0, 0, 2, 1, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 1, 2, 2, 0, 1, 2, 0, 1, 2, 1, 0, 1, 0, 2, 1, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 2, 1, 2, 0, 0, 1, 2, 2, 1, 0, 0, 2, 1, 2, 1, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 2, 1, 1, 0, 2, 2, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 1, 2, 1, 0, 1, 0, 2, 0, 1, 2, 2, 0, 1, 1, 2, 0, 1, 2, 0, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 1, 2, 2, 0, 1, 1, 2, 0, 0, 1, 2, 0, 1, 2, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1, 2, 0, 0, 2, 1, 1, 0, 2, 2, 1, 0, 0, 2, 1, 2, 1, 0, 1, 0, 2, 2, 1, 0, 2, 1, 0, 2, 1, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
last modified: 2003-09-25
Lb(81,9) = 48 BE Ub(81,9) = 49 follows by a one-step Griesmer bound from: Ub(31,8) = 16 is found by considering shortening to: Ub(29,6) = 16 is found by considering truncation to: Ub(28,6) = 15 HHM
HHM: N. Hamada, T. Helleseth, H.M. Martinsen & Ø. Ytrehus, There is no ternary [28,6,16] code
Notes
|