| lower bound: | 49 | 
| upper bound: | 54 | 
Construction of a linear code [80,9,49] over GF(4):
[1]:  [81, 9, 50] Linear Code over GF(2^2)
     Code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 0, w, 0, 1, w, w^2, w, 1, 1, 1, 1, w, 0, w, 0, w^2, 1, w^2, w, 1, w, 0, w^2, 0, 0, w^2, 1, w^2, 0, w^2, 1, 0, 1, 0, w, 0, 0, w^2, 1, 0, 1, w, 1, w^2, w^2, w^2, w^2, w^2, 0, w, w, w, 1, w^2, w, w^2, 1, 1, 1, w, 0, 1, w, 1, w, 0, w, 0, 1, w^2, w, w, 1, 1 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, w^2, w, w^2, 0, w, w, 0, 0, 0, w^2, 1, w^2, 1, 0, w, w^2, 1, 0, 1, 1, w, 0, 0, 1, w^2, 0, w, 1, 0, w^2, 0, w, w^2, 1, 1, 0, w^2, w, w, w, w^2, 1, 0, w, 0, 1, 0, w, 0, 0, w, w, 0, w^2, w^2, 0, w^2, 0, w, w^2, 1, w^2, w^2, 1, 0, 0, 1, w^2, 1, w ]
[ 0, 0, 1, 0, 0, 0, 0, 0, w, 0, 1, 1, w^2, w^2, 1, 0, w^2, w^2, 0, 0, w, w, w, w, 0, w, w, 0, w^2, w^2, w, w^2, 1, 1, 1, 0, 0, 1, w^2, w^2, 1, 0, 0, 0, w, w, w, w, w, w, 1, w^2, 0, w, w^2, 0, 0, w^2, w, w, 1, w, 1, 1, 1, w, 0, w^2, w, 0, 1, 1, w, w, w^2, w, 0, 0, 1, w, 1 ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, w, 0, w, w^2, w^2, 0, w^2, w^2, 1, 1, 0, 0, w, 0, w^2, 0, w^2, 0, w^2, w, w^2, w, 0, w^2, w^2, w, w, w^2, 1, 0, 0, 1, 0, w^2, w^2, 0, 1, w, w, w^2, w^2, 0, 0, 0, w, 0, w^2, w, w^2, 1, 0, w^2, w, w^2, 1, 0, 1, 0, 0, w, w, w, 1, w^2, w^2, 0, 0, w^2, w ]
[ 0, 0, 0, 0, 1, 0, 0, 0, w^2, 0, w^2, w, w^2, 0, 1, w^2, w^2, w^2, w, w^2, 0, w, 1, 0, 1, 1, 1, w, w^2, w, 0, w^2, 1, 0, w^2, 0, w, 0, w, 0, 1, 0, 1, w, 1, w^2, w^2, 1, w^2, 1, w, w^2, 1, 0, 0, w, 0, 0, 1, w, w^2, w, w, 0, w^2, 0, w^2, w^2, w^2, 1, 0, 1, 1, w, 1, 1, 0, 1, w^2, w, w ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, w^2, 0, w^2, w^2, w, w^2, w, w, 1, w^2, w^2, 1, 0, 1, w, 1, w^2, 1, 1, 1, 0, 0, 0, w, 0, 1, w^2, w, w, 0, 1, 1, w, 0, w, 0, 1, w, 0, w^2, w^2, w^2, 0, w^2, 1, 1, 0, w, 0, w, 1, 0, 0, 1, w, 0, w, w, 1, 0, 1, w^2, 0, 1, 1, 0, w, w, w^2, w^2, w ]
[ 0, 0, 0, 0, 0, 0, 1, 0, w^2, 0, 1, w, 0, 1, 1, 1, w^2, 0, 0, w^2, 0, 0, w, 0, w, 1, 1, w, 1, 0, 1, w, w^2, w^2, 0, 0, w, 0, 0, w^2, 1, 0, w, 1, w^2, w, w, w, 1, w, w, w, 0, w^2, w^2, w, w^2, 1, w, w, w, w^2, 1, w, w^2, w, w^2, 1, 1, 1, w, w^2, 0, 0, 1, w^2, 0, w, 0, w, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 1, w, 0, 1, w, 1, 0, 0, 0, w, 1, 0, w^2, 0, 0, w, 1, w^2, 0, 0, w, 0, 1, 0, w^2, w, w, 1, 1, w, 0, 0, w, 0, 1, w^2, 0, w, w, w, w^2, 0, w^2, w^2, w^2, 1, w, w^2, w, w, 0, w^2, w^2, w^2, w, 0, w, w^2, w^2, w, 0, 0, 0, w^2, w, 0, 1, 0, w, 1, w^2, 1, w^2, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, w, w^2, 1, w, w^2, 1, w, w, w^2, w^2, w^2, w^2, 1, 1, w, 1, w^2, w^2, w, 1, w^2, w^2, 1, 1, w, w^2, w^2, w^2, 1, 1, w, 1, w, w^2, w, 1, w, 1, w^2, w, 1, w^2, w, w^2, 1, w, w^2, w^2, w^2, 1, 1, 1, w, w, w^2, w, w, w, w^2, 1, w, w, 1, 1, 1, w^2, 1, w, w, w^2 ] where w:=Root(x^2 + x + 1)[1,1];
[2]:  [80, 9, 49] Linear Code over GF(2^2)
     Puncturing of [1] at { 81 }
last modified: 2009-08-13
Lb(80,9) = 48 is found by taking a subcode of: Lb(80,11) = 48 BZ Ub(80,9) = 54 follows by a one-step Griesmer bound from: Ub(25,8) = 13 is found by considering shortening to: Ub(23,6) = 13 BGV
BZ: E. L. Blokh & V. V. Zyablov, Coding of generalized concatenated codes, Probl. Inform. Transm. 10 (1974) 218-222.
| Notes
 |