| lower bound: | 39 |
| upper bound: | 42 |
Construction of a linear code [64,9,39] over GF(4):
[1]: [64, 9, 39] Linear Code over GF(2^2)
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, w^2, 1, w, w^2, 1, 1, 0, 0, 0, w^2, w, 1, w, w^2, 1, w, w^2, w, w, 1, 0, w, 0, 0, w^2, w^2, 0, 0, w, 0, 1, w, w, w^2, w, 1, 1, w^2, 1, w, w^2, 0, 0, 0, 1, 1, w^2, w, 0, 1, 1, 1, 1, 1 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, w^2, w^2, 0, 1, 0, 0, w, 1, 0, 0, w, w, 1, 0, 0, w, 0, 0, w, w^2, 1, 1, 1, w, 0, w, 1, w^2, 0, 1, w, w^2, 0, w^2, 0, w, 1, w, w^2, 1, 0, 0, w^2, 0, 0, w^2, w, w^2, w, w, w^2, w, w, w, w ]
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, w^2, 1, 0, 0, w^2, w^2, w^2, w, 1, 0, w, w^2, 1, 0, w, w^2, w^2, w, 1, w^2, 0, 1, 0, 1, w, w, 0, 1, w^2, 1, 1, 1, w, 1, 1, 1, 1, w, 0, 1, 0, w, 0, w^2, 0, w^2, 0, 0, w, w, 1, 1, 1, 1, 1 ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, w, w^2, w, w, w^2, w, 1, w^2, 0, w, w^2, w^2, w, 1, 0, 0, w^2, w, 0, w^2, 0, 1, 1, 1, w^2, 1, 1, 1, 0, w^2, 0, w, w^2, 0, 0, 1, w^2, w^2, w^2, w, 0, w^2, 1, w, w^2, w, w, w^2, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, w, 0, w, w^2, w^2, 1, 0, w, w^2, w, 0, 0, w, 1, w, 1, 1, 0, w^2, w^2, 1, w, w^2, w^2, 0, 0, 0, w^2, w^2, w, 1, w^2, w^2, 0, 1, 1, 1, w, 1, 0, 0, w, w^2, w, 0, 1, w^2, w^2, 0, w, 0, w, w, w, w ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, w, w^2, w, w^2, w, 1, w^2, 0, w, w^2, w^2, w^2, w, 1, 0, w^2, w, 0, w^2, 0, 1, 1, 1, w^2, w^2, 1, 1, 0, w^2, 0, w, w^2, 0, 0, 1, w, w^2, w^2, w^2, 0, w^2, 1, w, w^2, w, w, w^2, w, 0, 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, w, 0, 0, w^2, 0, w^2, 0, w, 0, 1, w, 0, w, 1, 1, 1, w, 1, 1, 1, w^2, 1, w^2, 0, w, 1, 0, 1, 0, w^2, 1, w, w^2, w^2, w^2, w, 0, w^2, w, 0, 1, w, w^2, w^2, w^2, 0, 0, 0, 1, 1, 1, 1, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, w^2, w^2, w, w^2, w, w^2, 0, 0, w^2, 0, 0, 1, w, w^2, w, w, 0, w^2, 0, w^2, w, 1, 0, w^2, 1, 1, w, w, 1, 1, 1, w^2, w, 0, 0, w, 0, 0, 0, w, w, 0, 0, 1, w, 0, 0, 1, 1, 0, w^2, w, w, w, w ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, w^2, 1, 0, w^2, 1, 1, 0, 0, 0, w^2, w, 1, w, w^2, 1, w, w^2, w, w, 1, 0, w, 0, 0, w^2, w^2, w^2, 0, w, 0, 1, w, w, w^2, w, 1, 1, w^2, w, w, w^2, 0, 0, 0, 1, 1, w^2, w, 0, 1, w^2, 1, 1, 1, 1 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2002-11-02
Lb(64,9) = 38 is found by truncation of: Lb(70,9) = 44 DaH Ub(64,9) = 42 follows by a one-step Griesmer bound from: Ub(21,8) = 10 is found by considering shortening to: Ub(18,5) = 10 Liz
Liz: P. Lizak, Optimal quaternary linear codes, Ph. D. Thesis, Univ. of Salford, Nov. 1995.
Notes
|