| lower bound: | 16 |
| upper bound: | 17 |
Construction of a linear code [33,9,16] over GF(3):
[1]: [35, 9, 18] Linear Code over GF(3)
Code found by Axel Kohnert and Johannes Zwanzger
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 0, 1, 0, 2, 2, 0, 2, 2, 1, 1, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1 ]
[ 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 2, 1, 1, 0, 0, 1, 2, 2, 0, 0, 0, 2, 1, 2, 0, 0, 0, 1, 0, 1, 2, 1, 1 ]
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 2, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 2, 2, 1, 2, 2, 0, 0 ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, 1, 0, 0, 1, 0, 1, 2, 0, 1, 0, 1, 1, 2, 0, 0, 2, 2, 2, 1, 1, 1 ]
[ 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 2, 1, 1, 2, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 2, 2, 0, 0, 0, 0, 2, 0 ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 0, 2, 1, 1, 0, 1, 2, 0, 0, 2, 1, 1, 1, 0, 0, 2, 1, 2, 1, 0, 0, 2, 0 ]
[ 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 2, 1, 1, 1, 0, 0, 2, 1, 0, 1, 2, 2, 1, 0, 1, 2, 0, 2, 1, 2, 1, 2, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 0 ]
[2]: [33, 9, 16] Linear Code over GF(3)
Puncturing of [1] at { 34 .. 35 }
last modified: 2008-07-14
Lb(33,9) = 15 is found by taking a subcode of: Lb(33,10) = 15 GB4 Ub(33,9) = 17 follows by a one-step Griesmer bound from: Ub(15,8) = 5 vE2
vE2: M. van Eupen, Four nonexistence results for ternary linear codes, IEEE Trans. Inform. Theory 41 (1995) 800-805.
Notes
|