Bounds on the minimum distance of linear codes
Bounds on linear codes [256,9] over GF(4)
| lower bound: | 176 | 
| upper bound: | 186 | 
Construction
Construction of a linear code [256,9,176] over GF(4):
[1]:  [255, 11, 175] "BCH code (d = 175, b = 1)" Linear Code over GF(2^2)
     BCHCode with parameters 255 175
[2]:  [256, 11, 176] Linear Code over GF(2^2)
     ExtendCode [1] by 1
[3]:  [256, 9, 176] Linear Code over GF(2^2)
     Subcode of [2]
last modified: 2008-05-17
From Brouwer's table (as of 2007-02-13)
Lb(256,9) = 176 is found by taking a subcode of:
Lb(256,11) = 176 XBC
Ub(256,9) = 186 is found by considering shortening to:
Ub(255,8) = 186 is found by considering truncation to:
Ub(249,8) = 180 DM4
 References 
 DM4: 
R. N. Daskalov & E. Metodieva, The Linear Programming Bound for Ternary and 
Quaternary Linear Codes, preprint, Jan 2002.
 XBC: 
Extended BCH code.
| Notes
All codes establishing the lower bounds were constructed using 
     MAGMA.
Upper bounds are taken from the tables of Andries E. Brouwer, with the exception of codes over GF(7) with n>50.  
For most of these codes, the upper bounds are rather weak.  
Upper bounds for codes over GF(7) with small dimension have been provided by Rumen Daskalov.
Special thanks to John Cannon for his support in this project.
A prototype version of MAGMA's code database  over GF(2) was
written by Tat Chan in 1999 and extended later that year by 
Damien Fisher. The current release version was 
developed by Greg White over the period 2001-2006.
Thanks also to Allan Steel for his MAGMA support.
My apologies to all authors that have contributed codes to this table for not giving specific credits.
If you have found any code improving the bounds or some errors, please send me an e-mail:codes [at] codetables.de
 | 
Homepage | 
New Query | 
Contact
This page is maintained by 
Markus Grassl
 (codes@codetables.de).
Last change: 30.12.2011