| lower bound: | 148 | 
| upper bound: | 155 | 
Construction of a linear code [216,9,148] over GF(4):
[1]:  [216, 9, 148] Linear Code over GF(2^2)
     Code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, w^2, w, w, 0, w^2, w^2, 1, w^2, w^2, w, 1, 1, w^2, w, w^2, w^2, 0, 1, 1, w^2, w^2, w^2, 0, w^2, w, w^2, 0, 1, w^2, 0, w^2, w, 0, w, w, 0, 1, 1, 1, 1, w^2, w, w, 1, w, 1, 0, w, w, 0, w, 1, w, 1, w^2, w^2, 0, 0, 1, w, 0, 1, w^2, 0, w^2, 1, 0, 1, w, w^2, w^2, 0, 0, w^2, 0, w^2, 1, 0, w, w, w^2, 1, w, w^2, 1, 1, w, w, 0, 1, w, w, w, w^2, w^2, w^2, w^2, 0, w^2, 0, w, w^2, 0, w, 1, w^2, 1, w^2, 1, w, 1, 1, 1, 0, w^2, w, 0, 0, w^2, 0, w^2, w, w, 0, w^2, 1, w^2, w, w^2, w^2, 1, w, 1, w^2, 0, w^2, w, 1, w^2, 0, 0, w, w, 0, w, w, 0, 0, w, w^2, 0, 1, w, w, 1, w^2, w^2, w^2, 0, 1, 1, 1, w, w, w, w^2, w, 0, w^2, 0, w^2, w^2, w, w^2, 1, w^2, 0, w, 0, 1, 0, 1, 0, w^2, 1, 0, 1, w, w, 0, 0, w, 0, w^2, w^2, 1, w, 0, w^2, w^2, w^2, 0, 0, 0, 0, 0 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, w^2, 0, w, 1, w, w, 1, 1, 1, 1, 0, 1, w^2, w, 0, 0, w, w, 1, 1, 0, 1, w, 0, w^2, 0, w^2, w^2, 0, 0, 1, 0, w, 0, 1, w^2, w, w, w^2, 0, w, w^2, w^2, 0, w, w^2, 0, w, w, w, w^2, 0, 0, w, w^2, 1, 0, 0, 1, w^2, w^2, 1, 1, w, 0, 1, 1, 1, 0, w^2, w, 0, 1, w, w, w^2, w^2, 1, 1, w, w, w^2, 0, w^2, 1, 1, w^2, w, w^2, w^2, 0, 1, 1, 1, 0, 0, 1, w, 0, w^2, w, w, w, w^2, w, w, w^2, w^2, w^2, 1, w, 0, w, 1, w, 1, w, 1, w^2, w, w^2, 0, 0, 0, 1, 0, w^2, w^2, w^2, 0, w^2, w, w, w^2, 1, 1, w, w, w^2, w^2, 0, 0, w, 1, 1, 0, w, w, 0, w^2, 1, w^2, w, w^2, 0, 1, w^2, 0, w, w, w, w^2, w^2, w, 0, w, w^2, w^2, 1, w^2, w^2, w, 1, 0, w^2, w, w, w, w^2, 0, 1, 0, w, w, w^2, 0, w, 0, w, w, 0, 0, 0, w, 1, w, w, 0, w, 0, 0, 0, w^2, 0, 1, w, w^2 ]
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, w, 1, w, 1, w, 0, w, w, w, w^2, w, 0, w^2, 0, w, w, 1, w, w, w^2, 0, 0, w^2, w^2, w^2, w^2, w^2, 1, w^2, 1, 0, 0, 1, w^2, 0, w^2, w^2, 0, 1, 0, 0, w^2, 1, w, w^2, w, 0, 0, 1, w, 1, 0, w, 1, 0, w, w, w^2, w, w, w^2, 1, w, 1, w^2, 1, 0, w, 1, w^2, w^2, w^2, 0, w^2, w, 1, w, w, w^2, 0, 0, 1, w, w^2, w^2, 1, w^2, 1, 0, w, 0, 1, 1, w, w^2, 1, 1, 0, w^2, w, 1, w^2, w, w^2, w, 0, 0, 0, w^2, 1, 0, w^2, 0, w^2, w^2, w, w^2, 0, 0, w^2, 0, w^2, w^2, 0, w^2, w, 1, w, 0, w^2, w^2, 1, w^2, 0, w^2, w, w^2, 0, w, w, 1, 1, w^2, 0, 1, 1, 0, 0, w, w, w^2, w^2, w^2, 1, w, 1, w, w^2, 1, w^2, 1, w^2, w, 0, w^2, 1, w^2, w^2, 1, w^2, w, 0, 1, 1, 0, 1, w^2, w, 0, w^2, w^2, w, w^2, 1, 0, w^2, w, w^2, w, w^2, 0, w^2, 0, w, 1, w^2, 1, 1, w, 1, w, 0, w^2 ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, w, w^2, w^2, w, w, 1, 1, w, w, 0, w^2, w^2, w, w, 0, w^2, 1, w, 1, w, w, w, 1, w, 0, 0, w, w^2, 1, w^2, w^2, 1, w, 1, w^2, w^2, w^2, w, 1, 0, 0, 1, w^2, 1, 0, 1, w^2, w, w, 1, w^2, w, 1, w, w^2, w^2, 1, w, w^2, w^2, 0, w^2, 0, 1, w^2, 1, 0, 0, 0, w^2, w^2, w, w^2, 0, 1, w^2, w, 1, 1, 1, w, w^2, w, w^2, 1, 1, 0, 1, w^2, 0, w^2, 1, w, w, w, 1, 1, 0, w, w, w^2, 0, 0, 0, 1, 0, 0, w, 1, 1, w^2, 1, w^2, 1, 0, w^2, 1, 0, 0, w, w, 0, 1, w, w, 0, w^2, w^2, 0, w^2, w, w^2, w, 0, w, 1, w^2, 1, w^2, w^2, w, 0, 1, w, w, w, 0, 0, w^2, 0, w^2, 1, 1, w^2, 0, 1, 1, 0, w, w^2, 0, w^2, w, 1, w^2, w^2, w^2, w, 0, w, 0, w^2, 1, w, 0, w^2, 1, w, w^2, w^2, w, 1, 0, 1, 1, w, 0, w, 1, 1, w^2, 0, 0, 1, 1, w^2, w^2, w^2, w^2, w^2, w, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, w^2, w^2, 0, 1, w^2, w, w^2, 1, 1, 1, w^2, w^2, 1, 0, w, w^2, w^2, 1, 1, 1, 1, w^2, w^2, w, 0, w^2, 1, w^2, 1, 1, w^2, w, 0, 1, w, w, w, 0, 1, w^2, w, 1, w^2, 1, w^2, 0, 1, w^2, 0, w, 1, w^2, 1, 0, w, 1, 1, w, 0, w^2, 0, 0, 1, 1, w^2, 1, w^2, 1, w^2, w^2, w^2, w, 0, w, 0, w, 0, w^2, 0, w, w, 1, 0, 0, w^2, 1, w^2, w, w^2, w^2, w^2, 1, 1, w^2, w, 1, 1, 0, w, 0, 1, w, 1, w^2, w^2, 0, w, w^2, 0, w, w, 1, w, w, w^2, w, 1, 1, 1, w^2, 1, 0, w, 1, 0, w^2, w, 1, w^2, 0, w^2, w^2, w^2, 0, w, w, w^2, w, w, w^2, w^2, 1, 1, 0, w^2, 0, 0, w^2, 1, 1, w^2, 1, 1, 0, w, 0, w^2, 1, w, w, w^2, 0, w, w^2, w^2, w, w, w, 1, w^2, 1, w^2, w, 1, 1, w, 0, w^2, w^2, 1, w, w, w, w, w^2, 0, w, 0, w^2, 0, 1, 0, 1, 1, 0, 0, 1, 1, w^2, w^2, w, 0, w, w^2, 0, w, 1 ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, w, w, w, w^2, w, 0, w^2, 0, w^2, w^2, w^2, w^2, 1, w, 0, 0, w, w^2, 1, w, w, 0, 0, 0, w, 1, w, 0, w, w, 1, w^2, 1, w^2, w, 1, w, w, w^2, 1, 0, w, 1, 1, 0, 0, w, 0, 1, 1, 0, 1, 0, w, 0, 1, 0, w^2, 0, w^2, w^2, 0, w^2, w, 1, w^2, 1, w, 0, w, w^2, w^2, 1, 0, w, 1, w, w, 0, w^2, w^2, 0, 1, w, 1, w, w, w^2, 1, w^2, w^2, w^2, w, w, 1, w, w, w^2, w^2, 0, 1, 0, w^2, w^2, 1, w^2, 0, 1, 0, 1, w^2, w^2, w, w^2, 1, w^2, 1, 0, w, 1, w, 1, w^2, 1, 1, 0, w, w, w, w, 1, 0, 1, 0, 1, w, 0, 0, 0, w^2, 1, 1, 1, 1, w, 1, 1, 1, w, 0, w, w^2, 0, 1, 1, w^2, w^2, 0, w, 0, 0, w, w, w, 0, 0, 1, w^2, w^2, 0, 0, w, w^2, 1, w^2, w^2, w, w^2, 0, 1, 1, 1, w^2, w^2, 0, w, w, 1, w, w, w, 1, 1, w, w^2, w^2, 0, 1, w, w^2, w, w^2, 0, 1 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, w, w^2, w^2, 0, 1, 1, w^2, w^2, 1, 1, 0, 0, 1, w^2, 1, w, 1, 1, 0, w, 0, w^2, w^2, w^2, w, w, 0, w, 0, 1, 1, w^2, w^2, 0, w^2, w^2, w, w^2, 0, w, w, 1, 0, w^2, 1, w, 1, 1, 1, 0, w, w^2, 1, 1, w, 0, w, w^2, w^2, w^2, 0, 0, w^2, w, w, w, w^2, w, w^2, 1, w, w, w^2, w, w, 0, w^2, w^2, 1, 0, 0, w^2, 0, w, w^2, w^2, 1, w^2, w^2, 1, w^2, w^2, 0, w, w, 1, 0, 1, w^2, w, 1, w^2, 0, 0, w^2, 0, 0, w^2, 0, w, w, w, 0, 0, w^2, w, w^2, w^2, w, w, 0, 1, 1, 1, w^2, 0, 0, w, 0, w, 1, w^2, 0, 1, 1, w^2, 0, w^2, w^2, 1, 1, w^2, 1, w, 1, 0, w^2, 0, 1, w, 0, w, 0, 1, 0, w^2, 1, 0, w^2, w^2, 1, 0, 0, w^2, 1, 1, w, 0, 0, w, w, 0, w^2, 1, 0, 0, 1, 0, w, 1, w, w, w^2, w^2, w, 0, 0, w^2, w, w, w, 1, 1, w^2, 0, 0, 0, w, 0, w, w^2, 0, w, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, w, 0, w, w, w^2, w^2, 0, 0, w^2, w^2, w, w, 0, w^2, w, w^2, 1, 1, w, 0, w^2, w^2, 1, w, 1, w^2, 0, 1, w^2, w, w^2, w^2, 1, 0, w, w, 1, w, 1, w^2, 0, w^2, 1, 1, w^2, w^2, 1, 0, w^2, 0, 0, w^2, w^2, w, 1, w^2, w, w^2, 1, 1, w^2, 0, w^2, 0, w^2, 0, w^2, w, 0, 1, 1, 0, w^2, 0, 1, 1, w^2, 0, 1, 1, 0, 1, w, 0, w, w, 0, 1, 1, w, w^2, 1, 1, 0, w, w, w, w^2, w, w^2, w^2, w, w, 1, 0, 0, w, w^2, w, 1, 0, w^2, 0, 1, w, w, w^2, w, 1, w, w, 0, w^2, 1, w, 1, 1, w^2, w^2, w, w, w, 0, w^2, w, w^2, 0, 1, 1, w, w, w^2, w^2, 0, w, 1, w, 1, 0, 0, 0, 0, 1, 1, w^2, 1, w, w^2, 0, 1, 0, 0, w^2, 1, w, 1, w^2, 1, 0, w, 0, 1, 1, 1, w, 1, 0, 0, 0, 1, w, w^2, 1, w^2, 1, w^2, 1, w^2, w^2, 0, w^2, w^2, w^2, w, 0, w^2, w, w, w^2, w, w, 1, w^2, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2012-03-29
Lb(216,9) = 145 is found by truncation of: Lb(219,9) = 148 MST Ub(216,9) = 155 is found by considering shortening to: Ub(215,8) = 155 is found by considering truncation to: Ub(213,8) = 153 DM4
MST: T. Maruta, M. Shinohara & M. Takenaka, Constructing linear codes from some orbits of projectivities, to appear in Discr. Math.
| Notes
 |