| lower bound: | 130 | 
| upper bound: | 137 | 
Construction of a linear code [192,9,130] over GF(4):
[1]:  [192, 9, 130] Linear Code over GF(2^2)
     Code found by Axel Kohnert and Johannes Zwanzger
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, w^2, 1, w^2, w, w^2, 0, 1, 1, w, w, 1, w, 0, 0, w^2, 1, w, 1, w^2, w, w, w, 1, 1, 1, 1, w, w^2, 0, w, 0, 0, 0, 0, 0, w^2, w, w^2, w, 1, w^2, 0, 1, w, 0, w, 1, 1, 1, 0, w^2, w, 1, w, 1, w^2, w^2, w^2, w^2, w, 0, w, w^2, 0, w, w, 1, 1, 1, 0, w^2, 0, w^2, w, 0, w, w^2, 0, w, w^2, w, w^2, w^2, 1, w^2, w, w, 0, 1, w, w, w^2, w, 1, w^2, 0, w, w^2, 1, w^2, w^2, w, 1, 0, 1, w^2, w^2, 1, 1, w, w, 1, w, w^2, 0, w, w^2, 1, 0, 1, w, w, 0, w, w^2, 0, 0, w^2, 0, 0, w^2, 1, w, 1, w^2, 1, 0, w^2, w^2, 0, w^2, w^2, w, 0, w^2, w, w, w, w^2, w, 1, 0, 1, w, w^2, w^2, w, w, w, w, w, 1, 1, w^2, 1, 0, w^2, w^2, w^2, 1, 1, 1, 0, 0, 1, 1, w^2, 0, 0, w, w^2 ]
[ 0, 1, 0, 0, 0, 0, 0, w, 0, 1, 0, 1, w^2, w, 1, 0, w, w^2, w^2, w, w, 0, 1, 0, w^2, 1, 0, 1, 1, 1, w^2, 1, 0, w^2, 0, w, w^2, w, w^2, 1, 0, w^2, 0, w, 1, w, w, 1, w, 0, 1, w, 0, w, w, w^2, 1, 1, 0, w^2, w^2, w^2, 0, w, w^2, 1, 0, 0, w^2, 1, w, w, w^2, w, 0, 0, 1, 0, 0, 0, w^2, w, 1, w^2, 1, 1, 1, 1, 0, 0, w^2, w, 0, 1, w^2, w, w, w, w^2, w, w, 1, 0, 1, w, 1, w, 0, 0, 1, w^2, w, 0, 1, w^2, 0, 0, 1, w, w, 0, w, 0, w^2, 0, w, 1, w^2, 1, w^2, 1, 1, w^2, 0, w, w^2, w^2, 1, w, w, 1, 1, 1, 1, 0, 0, 0, 1, w, 0, 0, 1, w^2, w^2, w, 1, 0, 0, 0, 0, w, w, w^2, 1, 0, w^2, 0, w^2, 1, w^2, 1, 0, 1, 1, 1, w^2, w^2, 1, w^2, w, 1, w, 1, 0, w^2, 0, 1, 0, w^2, w^2, w^2, 1 ]
[ 0, 0, 1, 0, 0, 0, 0, 0, w^2, 1, 0, 1, w, w^2, 0, w^2, 1, w, 0, w, 1, 1, w^2, 0, w^2, 1, w^2, 1, w^2, w, w^2, w^2, 1, w, 1, w, 1, 0, 0, w^2, 0, 0, 0, w^2, 1, 0, w^2, 1, 1, w^2, 0, 0, w, 1, w^2, w^2, 0, w^2, w^2, w^2, 1, 1, w, 0, 0, 0, 0, 0, 1, w^2, w^2, w^2, 0, 0, 0, 1, w, w, w, 1, w, 1, w^2, w^2, w, w, 1, 1, w, w^2, 0, w, w, 1, 0, 1, 0, w^2, w^2, 1, 0, w, 0, 1, 1, 0, w, w, 1, w^2, w^2, 0, 0, 1, w, 0, w, 0, 1, 1, w^2, 0, w^2, 0, w, 1, w, w, w, w^2, w^2, w^2, 1, 0, 1, 0, w^2, w^2, w, 0, 1, w, 1, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 0, w, w^2, w^2, w^2, w^2, 0, 1, w^2, 0, 0, 0, w, 1, w, 1, 1, w^2, w^2, w, w^2, 1, 0, w, w, w^2, 0, 0, 1, 0, w, w, 0, 0, w, 1, 1, 0, w^2, w, 1 ]
[ 0, 0, 0, 1, 0, 0, 0, w, 0, 1, 0, 0, 0, 0, w, 0, w^2, 0, 0, w^2, w, 1, 1, w^2, 0, w^2, 0, 0, 0, w, w^2, 1, 0, 1, 1, w^2, w, 1, w, w^2, 1, w, 0, 0, 0, 1, w^2, 0, 1, 0, 0, 0, w^2, w^2, 1, 1, 0, 1, 1, w^2, 0, 0, w, w, 0, w, w^2, 1, w, 1, w, 1, w^2, 0, w, 0, w, 0, 1, w, 1, w^2, 0, w^2, 1, w, w^2, 0, w^2, 1, w, 0, 0, 1, 1, 0, w^2, 1, 0, w, w, w, w, 1, 1, w^2, w, w^2, 1, 1, w^2, 1, w, 1, 0, w^2, 1, 1, 0, w^2, 0, w, 0, 1, w, w, 0, w, w, 1, 0, w, 0, w, w^2, 0, 0, w^2, w, w, w^2, w^2, w, 0, w^2, 1, w^2, w, 0, 1, w, w, 1, 0, w^2, 0, w, 1, 1, w^2, w, 0, 0, w, 1, 1, w^2, w^2, 1, w, w^2, 1, w^2, 1, w, 0, 1, w^2, w, w^2, 1, 0, 0, w^2, 1, 1, 1, w, w, w, w, 0 ]
[ 0, 0, 0, 0, 1, 0, 0, w, w^2, 1, 0, w^2, w^2, w, 0, w^2, w, 0, w^2, 0, 1, 1, w, 1, w, w, 0, w, w, 0, 1, w^2, 0, 0, w, 1, w, 0, 1, 0, 0, w, 0, 0, 0, 1, 0, 0, w, 1, w^2, 1, w^2, 1, w^2, 0, 0, 1, 0, w^2, w, w, 0, 1, 0, 1, 0, 1, w^2, w, w, w, w^2, 1, w^2, 0, 0, w, w^2, w, w, w^2, 1, w^2, w, 1, 0, 0, w^2, 0, 1, w^2, w, 1, w, 1, w, 1, 1, 1, w^2, w, 0, w^2, 0, w^2, w^2, w, w^2, w, 1, 1, 1, w^2, 1, w^2, 1, w, w, w, w^2, 0, w^2, 0, w, w, 0, w^2, 1, 1, w, 0, 1, 0, w, 0, w^2, w^2, 1, 1, 0, w, 1, 1, 1, w, w, w^2, 0, w, 1, 1, 1, w^2, 0, w, w^2, 1, 0, 0, w^2, 0, 1, 0, w, 0, 1, 0, w^2, 0, w, w, 1, 1, w^2, 0, 0, w, w, 0, 1, 0, 1, w^2, 0, 0, 0, w^2, 0, 0, 1, w ]
[ 0, 0, 0, 0, 0, 1, 0, 0, w, 1, 0, w, w^2, w, 1, 0, 1, w, w, 0, w, 1, w, w, 1, 1, 0, w^2, w^2, w^2, w, 0, w^2, 0, w, 1, w^2, w^2, w^2, w^2, 1, 0, 0, w, 1, 1, w^2, 0, w, 1, w, w, 0, w^2, w, w, w^2, 0, w^2, w^2, w, 1, w^2, w^2, w, w, 0, w, w, w, w^2, 1, w^2, 0, w, w^2, 0, w, 1, 1, w, 0, 1, 0, 1, 0, 1, w, w^2, 0, w, 0, 1, 0, 1, w, 0, 1, 0, 0, 1, w, w^2, w^2, 0, w, w, 1, 0, 0, 0, 0, 0, w^2, w^2, 0, 1, 1, w^2, w, w, 0, w^2, w^2, 0, w^2, 1, 0, w^2, 1, 1, 1, w^2, 1, 1, 1, w, w^2, 1, w, 0, w^2, 1, 0, 0, w^2, w, 0, w^2, 0, w^2, 0, 0, 0, w^2, w, 0, w^2, 1, w^2, 0, 1, 1, w, w^2, w, w, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, w^2, 1, w^2, w, w, 0, w^2, w, w, w^2, 0, w^2, w^2, 1 ]
[ 0, 0, 0, 0, 0, 0, 1, 1, w^2, 1, 0, 0, w, w^2, w^2, 0, 1, 0, 1, 1, 0, w^2, 1, w^2, w^2, w^2, 1, w, 0, 1, 1, w^2, w^2, w, 1, 0, w^2, w^2, 1, w, 1, 1, 0, 1, 0, 1, w^2, 1, 0, w^2, w, 0, 1, w^2, 1, w, w, w, 0, 1, 0, w^2, w, 1, w^2, 1, w^2, w, w, w, 0, 1, w^2, 1, w^2, w, w^2, 1, w, w^2, 0, w, 0, 0, w^2, w, 1, 1, w^2, 0, w^2, w^2, w^2, 0, w^2, w^2, 0, w^2, w^2, w^2, 1, 1, 0, 1, 1, w, 1, w, w^2, w^2, w, w^2, 0, w^2, w^2, w^2, 0, 1, w^2, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, w, w, 1, 1, w^2, w^2, 0, 1, 1, 0, w^2, 1, w^2, w, 1, w^2, 0, 1, 0, 0, w^2, 0, 1, w^2, 0, 0, 1, 1, w^2, 1, w^2, w^2, w, w^2, 0, 0, 0, w^2, 1, 0, w, 0, 1, w, w^2, 0, 1, 1, w^2, w^2, 1, w^2, w^2, 0, w, 0, w^2, 0, w, w^2, w^2, w ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, w^2, w, 1, w^2, w^2, w^2, 0, 0, w, 0, 1, w, 1, 0, w, 1, 1, w^2, w ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2008-06-13
Lb(192,9) = 129 is found by truncation of: Lb(193,9) = 130 MST Ub(192,9) = 137 is found by considering shortening to: Ub(191,8) = 137 is found by considering truncation to: Ub(190,8) = 136 Da1
MST: T. Maruta, M. Shinohara & M. Takenaka, Constructing linear codes from some orbits of projectivities, to appear in Discr. Math.
| Notes
 |