| lower bound: | 104 | 
| upper bound: | 111 | 
Construction of a linear code [156,9,104] over GF(4):
[1]:  [162, 9, 110] Linear Code over GF(2^2)
     Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, w^2, 0, w^2, 0, 1, w^2, w^2, w, 0, 1, w, 1, 0, 0, w, w^2, 0, 1, 1, 0, 1, w, 1, w, w^2, 1, 1, 0, 1, w, w, 1, 0, 1, 0, 0, 0, 1, w^2, 0, w^2, w^2, w^2, 0, w, 0, 0, w^2, 0, w, w^2, w, 1, 1, w^2, w^2, 1, w^2, w, w^2, 0, 1, w^2, 0, 1, w^2, w^2, w, w, w, 1, w^2, 0, 1, w, 1, 1, 0, w, w, 1, 0, w^2, w, 1, 1, 1, w^2, w^2, w, 0, 0, w^2, w, 0, w^2, 1, w^2, w, w^2, w, w, 1, w^2, 1, 0, w^2, 0, 0, w^2, 1, 0, w^2, w^2, w^2, 0, w^2, 0, 0, 0, w, 0, w, 1, 1, w, 0, w, w, w, w^2, 1, w, 1, w, w, w, 0, w^2, 1, 0, 0, w, 1, w, w, 0, 1, w^2, w^2, w, 0, w^2 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, w^2, 0, w^2, 0, 1, w^2, w^2, w, 1, 1, w, 1, 0, 0, w, w^2, 0, 1, 1, 0, 1, w, 1, w, w^2, 1, 1, 0, 1, w, w, 1, 0, 1, 0, 0, 0, 1, w^2, 0, w^2, w^2, w^2, 0, w^2, 0, 0, w^2, 0, w, w^2, w, 1, 1, w^2, w^2, 1, w^2, w, w^2, 0, 1, 0, 0, 1, w^2, w^2, w, w, w, 1, w^2, 0, 1, w, 1, 1, 0, w, w, w, 0, w^2, w, 1, 1, 1, w^2, w^2, w, 0, 0, w^2, w, 0, w^2, 1, w^2, w^2, w^2, w, w, 1, w^2, 1, 0, w^2, 0, 0, w^2, 1, 0, w^2, w^2, w^2, 0, w, 0, 0, 0, w, 0, w, 1, 1, w, 0, w, w, w, w^2, 1, w, 1, 0, w, w, 0, w^2, 1, 0, 0, w, 1, w, w, 0, 1, w^2, w^2, w, 0 ]
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, w^2, 0, 0, 0, w, w^2, w, 1, w^2, 1, w^2, 0, w, 1, w, w^2, w, w, 1, 1, 0, w, 0, 0, w, w^2, w, 1, 0, w, w^2, w^2, w, 0, 0, 1, 0, 1, w^2, 1, 0, w^2, 0, w^2, 1, w, w^2, w^2, 0, 1, w^2, 0, w, w^2, w, w, w, 0, w^2, 0, w, w, w^2, w^2, 1, w^2, w, 1, 1, 0, w^2, 1, 1, w, w, 0, w^2, 1, w^2, w, w^2, 1, 1, w, w, w^2, 0, w, w, 1, w^2, w, w^2, w, w^2, 1, 1, 0, w^2, 1, 1, 1, w^2, 1, 0, w^2, w, 0, w^2, w^2, 1, w^2, w, w^2, 0, w^2, 0, w^2, w, 0, w, 0, 0, 1, w^2, w^2, 1, 0, w, 0, 1, w^2, 1, 0, 0, 0, w, w, 1, 1, w^2, 1, w, 1, 0, w^2, w, w^2, w^2, w, 1, w^2, 1 ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, w^2, 0, 0, 0, w, w^2, w, 1, w^2, 1, w^2, 0, w, 1, w, w^2, w, w, 1, 1, 0, w, 0, 0, w, w^2, 0, 1, 0, w, w^2, w^2, w, 0, 0, 1, 0, 1, w^2, 1, 0, w^2, 0, w^2, w^2, w, w^2, w^2, 0, 1, w^2, 0, w, w^2, w, w, w, 0, w^2, 0, w, w, 1, w^2, 1, w^2, w, 1, 1, 0, w^2, 1, 1, w, w, 0, w^2, 1, w^2, w, 0, 1, 1, w, w, w^2, 0, w, w, 1, w^2, w, w^2, w, w^2, 1, 1, 0, 0, 1, 1, 1, w^2, 1, 0, w^2, w, 0, w^2, w^2, 1, w^2, w, w^2, 0, w^2, w, w^2, w, 0, w, 0, 0, 1, w^2, w^2, 1, 0, w, 0, 1, w^2, 1, 0, 1, 0, w, w, 1, 1, w^2, 1, w, 1, 0, w^2, w, w^2, w^2, w, 1, w^2 ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, w, 0, w, 1, w^2, 0, w, 1, 0, w^2, w^2, 0, 1, 0, w, 1, 0, w, w^2, w, w, 1, 1, w, 0, w, w, w, w^2, 0, w^2, 1, w, 0, 0, w^2, 1, 1, w, 0, 1, w^2, w^2, 1, w^2, w^2, w^2, 0, 1, w, 1, w, w^2, w, 0, w^2, 1, 1, w^2, w, w^2, w^2, w^2, w, 0, 0, 1, w, w^2, 1, w^2, w^2, w, 0, 0, 0, 0, w, 1, w^2, 1, w, w^2, 0, 0, w, 1, 1, w, 1, w, 1, w^2, w^2, 1, 0, w, w, w^2, w, w^2, 0, 1, 1, 1, w^2, w, 1, 1, w^2, 0, w, w^2, w^2, 1, 0, w, w^2, 1, 0, 1, w, w, w, w^2, 0, w, w^2, w^2, w, w, 1, w, w^2, w, 0, w^2, 0, 1, 1, 0, w^2, 1, w, 0, 1, w^2, w, 0, w, 0 ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, w^2, 1, w^2, w, 1, 1, w, 1, 0, w, w^2, 1, w^2, w^2, w, w, 0, w^2, 0, 0, w^2, 1, w^2, 0, w, 0, w^2, 1, w^2, 0, 0, w, 0, w, 1, w, 0, 1, 0, 1, w, 1, w^2, 1, 1, w, 1, 0, w^2, 1, w^2, w^2, w^2, 0, 1, 0, w^2, w^2, 1, w, 1, w, 1, w, w, 0, 1, w, w, w^2, w^2, 0, 1, w, 1, w^2, 1, 0, w, w, w^2, 1, 0, w^2, w^2, w, 1, w^2, 1, w^2, 1, w, w, 0, 1, 0, w, w, w, w, 0, 1, w^2, 0, 1, 1, w, 1, w^2, 1, 0, 1, 0, w^2, 1, w^2, 0, 0, 0, w, 1, 1, w, 0, w^2, 0, w, 1, w, 0, 0, w, 0, w^2, w^2, w, 1, w, w^2, w, 0, 1, w^2, 1, 1, w^2, w, 1, w, 0, 0, 0, 1 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, w^2, 1, w^2, w, 1, 1, w, 1, w^2, w, w^2, 1, w^2, w^2, w, w, 0, w^2, 0, 0, w^2, 1, w^2, 0, w, 0, 1, 1, w^2, 0, 0, w, 0, w, 1, w, 0, 1, 0, 1, w, 1, w^2, 1, 0, w, 1, 0, w^2, 1, w^2, w^2, w^2, 0, 1, 0, w^2, w^2, 1, w, 1, w, w^2, w, w, 0, 1, w, w, w^2, w^2, 0, 1, w, 1, w^2, 1, 0, w, w, w^2, 1, 0, w^2, w^2, w, 1, w^2, 1, w^2, 1, w, w, 0, 1, 0, w, w, 1, w, 0, 1, w^2, 0, 1, 1, w, 1, w^2, 1, 0, 1, 0, w^2, 1, w^2, w^2, 0, 0, w, 1, 1, w, 0, w^2, 0, w, 1, w, 0, 0, w, 0, w^2, w, w, 1, w, w^2, w, 0, 1, w^2, 1, 1, w^2, w, 1, w, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, w, 1, 1, w^2, 0, w, w, w, 0, 0, w^2, 1, 0, w, w, 0, w, w^2, w, w^2, 1, w, w, w, 0, w^2, w^2, w, 0, w, 0, 0, 0, w, 1, 0, 1, 1, 1, 0, w^2, 1, 0, 1, 0, w^2, 1, w^2, w, w, 1, 1, w, 1, w^2, 1, 0, w, 1, 0, 0, 1, 1, w^2, w^2, w^2, w, 1, 0, w, w^2, w, w, 0, w^2, w^2, w, w^2, 0, w^2, w, w, w, 1, 1, w^2, 0, 0, 1, w^2, 0, 1, w, 1, w^2, 1, 1, w^2, w, 1, w, 0, 1, 0, 0, 1, w, 0, 1, 1, 1, 0, 1, w^2, 0, 0, w^2, 0, w^2, w, w, w^2, 0, w^2, w^2, w^2, 1, w, w^2, w, w^2, 0, w^2, 0, 1, w, 0, 0, w^2, w, w^2, w^2, 0, w, 1, 1, w^2, 0, 1, 0, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, w, 1, 1, w^2, 0, w, w^2, w, 0, 0, w^2, 1, 0, w, w, 0, w, w^2, w, w^2, 1, w, w, w, w, w^2, w^2, w, 0, w, 0, 0, 0, w, 1, 0, 1, 1, 1, 0, w^2, 1, 0, 1, 0, w^2, 1, w^2, w, w, 1, 1, w, 1, w^2, 1, 0, w, 1, 0, w, 1, 1, w^2, w^2, w^2, w, 1, 0, w, w^2, w, w, 0, w^2, w^2, w, w^2, 1, w^2, w, w, w, 1, 1, w^2, 0, 0, 1, w^2, 0, 1, w, 1, w^2, 1, w^2, w^2, w, 1, w, 0, 1, 0, 0, 1, w, 0, 1, 1, 1, 0, 1, w^2, 0, 0, w^2, 0, w^2, w, w, w^2, 0, w^2, w^2, w^2, 1, w, w^2, w, w^2, 0, w^2, 0, 1, w, 0, 0, w^2, w, w^2, w^2, 0, w, 1, 1, w^2, 0, 1, 0 ] where w:=Root(x^2 + x + 1)[1,1];
[2]:  [156, 9, 104] Linear Code over GF(2^2)
     Puncturing of [1] at { 157 .. 162 }
last modified: 2002-10-21
Lb(156,9) = 104 is found by truncation of: Lb(162,9) = 110 MSY Ub(156,9) = 111 is found by considering shortening to: Ub(154,7) = 111 DM3
MSY: T. Maruta, M. Shinohara, F. Yamane, K. Tsuji, E. Takata, H. Miki & R. Fujiwara, New linear codes from cyclic or generalized cyclic codes by puncturing, to appear in Proc. 10th International Workshop on Algebraic and Combinatorial Coding Theory(ACCT-10) in Zvenigorod, Russia, 2006.
| Notes
 |