| lower bound: | 72 |
| upper bound: | 72 |
Construction of a linear code [152,9,72] over GF(2):
[1]: [3, 2, 2] Cyclic Linear Code over GF(2)
CordaroWagnerCode of length 3
[2]: [51, 5, 36] Linear Code over GF(2^2)
Construction from a stored generator matrix:
[ 1, 0, 0, 1, w, 0, 0, 0, w^2, 1, w, w^2, w, 0, 0, w, w, 0, w, 1, w, w^2, w^2, 1, 0, w, 0, w, w, 0, 1, w, w^2, w^2, w, 0, w, w, w^2, w^2, 1, 0, w, 1, w, w, w^2, 0, 0, w^2, w ]
[ 0, 1, 0, 1, w^2, 0, 0, 1, 1, w^2, 0, 0, 0, w, w, w^2, 0, 1, w^2, 0, w^2, w^2, 1, w^2, 1, 1, w^2, 1, w^2, w, 1, 1, 0, 1, 1, 0, 0, 0, w, 1, w^2, w^2, 0, w^2, 0, 1, 1, 1, w^2, 1, 1 ]
[ 0, 0, 1, w, w, 0, 0, w^2, 1, 0, w^2, w, 0, 0, w^2, w, 0, w, 1, w^2, w^2, w^2, 1, 0, w^2, 0, w, w, 0, w^2, w, w^2, w^2, w, w, w, w, w^2, w^2, 0, 0, w, 1, w, w, w^2, 0, 0, w^2, w^2, 1 ]
[ 0, 0, 0, 0, 0, 1, 0, w, w^2, w, w^2, w, w, 0, w^2, w^2, 0, 1, w, 1, w, w^2, w, w, 0, 1, w, 1, 1, 0, w, w^2, w, w, 0, w^2, w^2, 0, 1, w, 1, w^2, w^2, 0, 1, w, 0, w^2, 1, w^2, 0 ]
[ 0, 0, 0, 0, 0, 0, 1, w, 1, 1, 1, 1, 0, w, w^2, 0, w^2, 1, w^2, w^2, w, 1, 1, 0, w, 1, w^2, w^2, 0, 1, w, 1, 1, 0, w, w, 0, w^2, 1, w^2, w, w, 0, w^2, 1, 0, w, w^2, w, w, 0 ] where w:=Root(x^2 + x + 1)[1,1];
[3]: [153, 10, 72] Quasicyclic of degree 51 Linear Code over GF(2)
ConcatenatedCode of [2] and [1]
[4]: [152, 9, 72] Linear Code over GF(2)
Shortening of [3] at { 153 }
last modified: 2001-01-30
Lb(152,9) = 72 is found by shortening of: Lb(153,10) = 72 BZ Ub(152,9) = 72 follows by a one-step Griesmer bound from: Ub(79,8) = 36 otherwise adding a parity check bit would contradict: Ub(80,8) = 37 BJV
BZ: E. L. Blokh & V. V. Zyablov, Coding of generalized concatenated codes, Probl. Inform. Transm. 10 (1974) 218-222.
Notes
|