| lower bound: | 92 | 
| upper bound: | 99 | 
Construction of a linear code [140,9,92] over GF(4):
[1]:  [140, 9, 92] Linear Code over GF(2^2)
     Code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, w^2, 0, 0, 0, w^2, 0, 0, 0, w, 0, 1, 1, w, w^2, w, w^2, w^2, w^2, 0, 0, 1, w, w^2, w^2, 1, w, 1, w^2, w^2, 1, 1, w^2, 1, w, 0, w^2, 1, 0, w, 0, w, w, w^2, 1, w, w^2, 0, 1, w, 0, 0, 0, 0, w, w, w, w, 0, w^2, 0, 1, w, 0, 1, w^2, 0, 1, 1, w^2, 0, 0, 1, 1, 0, 0, 0, w, 0, 1, w, w, 1, 1, 1, w, w, w, 1, w, 0, w^2, 1, w, 0, 1, w, 1, w^2, w, 1, w^2, w, w^2, 0, w^2, 0, 0, w^2, w^2, w, 1, w, 0, w, 0, w^2, w^2, w, w, 1, w, 0, w, 1, w^2, w, w^2, 0, w^2, 1, 0, 0, w ]
[ 0, 1, 0, 0, 0, 0, 0, w, 0, 0, 0, 0, w^2, 1, w, 0, 0, w^2, 0, 1, w, w, 0, w, 1, 1, w, w^2, w^2, w^2, 1, 0, 0, 1, w^2, 0, 0, 1, w, w, w^2, 1, w^2, 0, 0, 0, 1, 1, 1, w, w, 1, 1, w^2, w, 1, w^2, 0, w, 1, w, w, 0, w, w^2, 0, 1, w^2, w, 1, w^2, w, w, 0, 0, w^2, w, 1, w^2, 1, 0, 0, 0, 0, 1, w, 0, w, w, 1, w^2, w^2, w^2, w^2, 0, 0, w^2, 1, 1, 1, w^2, 0, w^2, w^2, 0, w, w, w, w^2, 0, 1, w^2, 1, w^2, w^2, 1, 0, 1, 0, 0, 1, 0, w, 1, w, w^2, w, w^2, 0, w, 1, 0, 0, w, 1, 0, w, w^2, w, w ]
[ 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, w^2, 0, 0, w^2, w, 0, w^2, 0, w^2, 0, w, w, 1, w^2, w, 0, 1, 0, w^2, 0, w, 1, 0, w^2, w^2, w, 0, w^2, 0, 1, 0, w^2, 0, 1, 0, 0, w, w, 1, w^2, 0, 1, w, w^2, 0, 0, 0, w^2, 1, 0, 1, 1, w^2, w^2, w, 1, 0, w^2, w, w^2, 1, 0, 0, 1, 1, 0, w, 1, 1, 1, 0, w, w, w, w, w^2, 1, 1, w^2, 0, 0, 0, 1, 0, w^2, 1, w^2, 1, 0, w, 1, 1, 0, w^2, 1, w^2, w, 1, w^2, w^2, 0, w^2, w^2, 0, w^2, w^2, 1, w, w, 1, 0, 1, 0, 1, 1, w^2, 1, w, 0, 1, 1, w, 1, 0, w^2, 0, 0 ]
[ 0, 0, 0, 1, 0, 0, 0, w, 0, 0, 0, w, w^2, 0, w, 0, 1, 0, w^2, 1, 0, 1, 1, w^2, 1, 1, w, 0, 1, 0, w, w^2, 0, 0, 0, 0, w, w^2, 0, w^2, 1, w^2, w^2, 1, 0, 0, 0, w^2, w^2, 0, 1, w, 0, 0, 0, w^2, w^2, 0, 1, 0, 1, w^2, 1, 1, 1, 1, 1, 1, 0, 1, 0, w^2, 1, 0, 1, w^2, 1, w, 0, w, w^2, 0, w, 1, 1, w^2, 0, w^2, 1, 1, w^2, w, w^2, w^2, w, 0, w^2, w, 0, w^2, 0, 0, 1, w, w^2, 1, 1, w^2, 0, w, 1, w^2, w, 0, 1, 1, w^2, 1, w, 0, w^2, 0, w^2, 0, w^2, w^2, 1, w, 0, w, 1, w^2, w, 1, 0, 1, w, 0, 0, w^2 ]
[ 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, w^2, 1, 0, 0, 0, w, 0, 1, w^2, 0, 0, w^2, w, 0, w^2, w^2, 1, w^2, w^2, w, 1, 0, 0, 1, w^2, 0, 1, w, 0, w^2, 0, 0, 1, w^2, w^2, w^2, w^2, w, w^2, w, w^2, 1, w^2, 1, 1, w, w^2, 0, w, w^2, w, w, 1, 1, w^2, 0, 0, 0, 1, w^2, w, w, 0, w, w^2, w, w, 1, w^2, 0, w^2, 1, 0, w, 0, 0, w, w, w, 1, w, w, w^2, 0, w^2, 0, w^2, 1, w^2, w^2, w^2, w, 0, 1, w, 0, w^2, w, w, w^2, 0, w^2, 0, w, 0, w^2, w, w, 0, 0, 0, 1, 0, w, 0, w^2, w^2, w^2, 1, w, 1, 1, 0, w^2, 1, 1, w ]
[ 0, 0, 0, 0, 0, 1, 0, 0, w^2, 0, 0, 0, 1, 0, w^2, w, 0, 0, 1, w, w^2, w, 0, 0, w^2, 0, 1, 0, 1, 1, 0, 0, w^2, w^2, 1, w^2, 0, w, 1, 1, w^2, w^2, 1, w^2, w, w, 0, w, w^2, 0, w^2, 0, w^2, w, w^2, w, w, w^2, w, w, w^2, 1, w^2, w, 1, 1, w, w^2, w, 0, 0, w, 0, 1, w, 0, 0, w, w^2, w^2, w^2, w, w^2, w, w^2, 0, 0, w^2, 1, 0, w, w, w^2, 1, w^2, 0, w, w^2, w^2, w, w^2, w, w^2, 0, w^2, 1, 0, w^2, w^2, 1, 0, 0, 0, w^2, w^2, 0, 0, 0, 1, 0, 0, 1, w, w, w^2, w^2, 1, w^2, 1, w, w^2, w^2, 0, w^2, 1, w, 0, 1, 1, w^2 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, w^2, 0, 0, w^2, 1, w, 0, w, 0, 1, 0, 0, w^2, w^2, w^2, w, 0, 1, w, w, 1, w^2, 0, 1, w, w, w^2, w, w^2, 0, w^2, w^2, w, w^2, w^2, 1, 0, w, w, 0, w^2, w^2, 1, 1, w, w, 0, w, w^2, 1, w, 0, 1, 0, w, 1, w^2, w^2, 0, 0, 1, w, w, w^2, 0, 1, 0, 0, 1, w, 0, w^2, w^2, w, w, 0, w, 1, w^2, w^2, 0, 1, w^2, 0, 1, 1, w, 0, 0, w, w, w, w, 1, w^2, w, 0, w^2, 1, 0, 1, w^2, w^2, w^2, w, w, 1, 1, w^2, w, w^2, 1, w^2, w^2, w^2, 1, w^2, w, w, 1, w, w, w, 0, w^2, 1, 0, w^2, w, 1, w, w ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, w^2, 1, w^2, w^2, 0, 0, w^2, 1, 1, w, 1, 0, 1, 1, 0, w^2, w^2, w^2, 1, 1, w^2, w, 0, w, 1, w^2, 0, 0, w, w^2, 1, w, 0, 0, 0, 1, w^2, w^2, 0, w^2, w^2, 1, w, 0, 1, w, 0, w^2, 0, w^2, w^2, w^2, 1, w^2, 1, w^2, 0, 0, 1, w^2, 0, 0, 0, w, w, 0, w, 1, 0, 1, 1, 0, w^2, 0, w^2, 0, w^2, w^2, 1, w, 1, w, 1, w, w, 0, 1, w, w, 0, 1, 1, 1, 0, 0, w, 0, w, w, w, w, w, w^2, w^2, 1, 0, 1, 0, w, 0, 0, 1, 1, 0, 0, 0, w, 1, w, 1, 1, 1, w^2, w^2, w^2, w, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, w, 0, w, w, 1, 1, w, 0, 1, w, 1, 0, 1, 1, 0, w, w, w, 0, 0, w, w^2, 1, w^2, 0, w, 1, 1, w^2, w^2, 1, w, 0, 0, 0, 1, w^2, w^2, 1, w, w, 0, w^2, 1, 0, w^2, 1, w, 1, w, w^2, w^2, 1, w, 0, w, 1, 1, 0, w, 1, 1, 1, w^2, w^2, 1, w^2, 0, 1, 0, 0, 0, w^2, 0, w^2, 0, w, w, 0, w^2, 0, w^2, 0, w^2, w^2, 1, 0, w^2, w^2, 1, 0, 0, 1, 0, 0, w, 0, w^2, w^2, w^2, w^2, w^2, w, w, 0, 1, 0, 1, w^2, 1, 1, 0, 0, 0, 1, 1, w^2, 0, w^2, 0, 1, 0, w, w, w, w^2, 1 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2009-01-27
Lb(140,9) = 91 is found by truncation of: Lb(142,9) = 93 MSY Ub(140,9) = 99 is found by considering shortening to: Ub(138,7) = 99 is found by considering truncation to: Ub(136,7) = 97 DM3
MSY: T. Maruta, M. Shinohara, F. Yamane, K. Tsuji, E. Takata, H. Miki & R. Fujiwara, New linear codes from cyclic or generalized cyclic codes by puncturing, to appear in Proc. 10th International Workshop on Algebraic and Combinatorial Coding Theory(ACCT-10) in Zvenigorod, Russia, 2006.
| Notes
 |