| lower bound: | 89 | 
| upper bound: | 96 | 
Construction of a linear code [136,9,89] over GF(4):
[1]:  [137, 9, 90] Linear Code over GF(2^2)
     Code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, w^2, w^2, w^2, w^2, 0, 0, w, w^2, 0, 1, w^2, 0, 1, 1, w^2, w, 0, 1, w, w^2, w^2, 1, w^2, 1, 0, w^2, 0, 0, 1, 1, w, 0, 0, w, 0, w, 1, 1, w^2, w, 0, w^2, 1, w^2, w, 1, w, 1, w^2, w, w, w^2, w^2, 0, w, 0, 1, 1, 0, w, w, 0, 0, w, w^2, w^2, 0, 0, w^2, w^2, 0, w^2, 0, 1, 0, 0, 0, w^2, w^2, w, 0, 0, 0, 1, 0, w, 1, w^2, 0, w^2, w, 1, w^2, w, w^2, 0, 1, w, w, 1, 1, 0, w, w, 0, 0, 1, w, w^2, 1, w, w^2, 1, 0, w, w^2, 0, w, 1, w, w, w^2, w, 1, 0, w^2, 0, 1 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, w^2, w, w^2, w^2, 1, w, w^2, w, 1, w, 1, w^2, 0, w, 1, w^2, 1, w, w^2, w^2, 1, w^2, 1, w^2, 0, 0, 0, w, 1, 0, w^2, w^2, w^2, 0, 0, 1, 1, w^2, 0, 0, 0, w^2, w, w^2, 1, w, w^2, w, w, 0, 0, w, w, w, w^2, w^2, w^2, 0, 1, w^2, w, 1, w, 0, 0, 1, 1, 1, 0, 1, w^2, 0, w^2, 0, w^2, 0, w, 0, w, 1, w^2, 0, w, 1, w, 0, 0, 1, 1, 0, 1, 0, w, w, 0, w, w, w, w^2, 0, 1, 1, w^2, w^2, 1, w^2, 0, 1, 0, 1, 1, w, 1, 1, 0, w^2, w^2, 1, 0, w^2, w^2, 0, 0, 1, 0, w^2, 0, w^2 ]
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, w^2, 0, 0, 1, w^2, 1, w^2, 1, w^2, w^2, w^2, w^2, 1, w^2, 1, 1, 0, 1, w^2, 1, w^2, 0, w, 1, w, 0, w, 1, w^2, 1, w^2, w^2, w^2, 0, 0, w, 1, w, w, w^2, 1, 0, 0, w, 1, 0, 1, 1, w, 0, w, 0, 1, 1, w, w, 0, w^2, w, 1, w^2, w^2, 0, w^2, w^2, w^2, w^2, w, w, w, 0, w, w, w^2, w^2, 1, 0, w^2, w^2, w^2, 1, 0, w, 0, w^2, w, 1, w, 0, w^2, 1, 1, w^2, 1, w^2, 1, 0, w, 0, 0, w^2, w, 1, 1, w, 1, 1, 1, w^2, 0, 1, 1, 1, 1, 1, w, 1, 1, w^2, 1, 0, 1, 1, 1, 1, 0, w, w^2 ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, w^2, 1, 0, 1, w^2, w^2, 1, 1, w^2, 1, 0, 0, 1, 0, w^2, 1, w^2, 1, w, w^2, w, w^2, 0, w, 1, 1, 1, w, 1, w^2, 0, w^2, w^2, w^2, w^2, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, w, w, 0, w, w^2, 0, 0, 1, w, w, 0, 0, w, w, w, 0, 0, 1, w, w^2, 1, w, 1, 0, w, 0, 0, 0, 0, 0, w^2, 0, w^2, 0, w, w, 0, w, w, 0, w, 0, w^2, 0, w^2, w^2, w, 0, 1, w^2, w^2, 1, 1, 1, 0, w, w, 1, 1, w^2, 1, 1, w^2, w, 0, 0, w^2, w, w^2, w^2, 1, w, 1, 1, w, 1, 1, 1, 0, w^2, 0, w^2 ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, w^2, 0, 1, w, w, w, 0, w, w^2, w^2, w, 0, 0, w, w^2, w^2, 1, w, w^2, 1, 0, 1, 1, w^2, w, w, w^2, 0, 0, w^2, 1, 1, 1, w^2, w, 1, w, 1, 1, 1, w^2, w^2, 0, w, 1, 1, w^2, w^2, 0, 0, 1, w, 0, 0, 1, w, w, 1, 0, 1, 1, w^2, 1, w^2, 0, 1, 1, 0, 1, w, w^2, 1, 0, w^2, 0, 0, w, w, 0, w, 0, w^2, 0, 1, w, w, 1, 0, 1, w, w^2, w^2, 0, w^2, 0, w^2, w, 0, w, 0, 1, 1, 1, w, w^2, 0, 0, w^2, w^2, 1, 1, 1, 1, 1, w, w, w, 0, 0, 1, w, w^2, w, w, w^2 ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, w, w^2, w^2, w^2, w, 1, 1, 1, w^2, 0, 0, 0, w, w, w^2, w^2, 0, w^2, w^2, 1, 1, 1, w, w^2, w^2, 1, w^2, 0, 0, 0, 1, w, 1, w, w, 0, w, w, 0, 0, w^2, w, 1, 1, 1, 0, w^2, 0, 0, w, w, 0, w, 0, 1, w^2, w^2, 1, w, 1, w^2, 1, 0, w, w^2, 0, 0, w, w, w, 1, 1, 1, 0, 0, 0, w^2, 1, w^2, 1, w, w, w^2, 1, w, 0, w, 1, w, w^2, 0, w, w^2, 0, w, 0, w, w, 1, w, 1, w^2, 0, 1, 0, w^2, 0, 1, 0, w^2, w^2, 0, 0, w, 1, w, w, w, 0, w^2, w, w^2, w^2, 1, 0, w^2, w^2, w^2 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, w, 1, w, 1, 1, w, w, 0, 1, w, 1, w, 1, w, w^2, 0, 0, 1, 0, 1, w, 1, 1, 0, w^2, 0, 0, 0, 1, w^2, w^2, w^2, w, w^2, 1, w, 0, w^2, w, 0, 1, w, 1, w^2, 1, w, 1, 0, w, 1, w^2, 0, w^2, w^2, w, 0, w, 1, w^2, 0, w, w^2, w^2, 0, 1, w^2, 1, w, 0, w, w^2, 0, 0, w^2, w^2, 1, w^2, w^2, 1, w, w^2, 1, 0, w, 0, w, 0, 0, 1, w, 0, 1, 1, w, 0, w^2, 0, 1, w^2, w^2, w^2, 1, w, 0, w^2, 1, 0, 0, w^2, 0, w, 0, 0, w, w^2, 0, 0, w, w, w^2, 1, w^2, 0, 1, 1, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, w, w, 1, 0, w, 0, w, 1, 1, 1, w, 1, 1, 1, 0, w^2, w, 0, w, 0, w^2, w^2, 1, 0, w^2, w, w^2, 0, w^2, w, w^2, 0, 0, w^2, 0, 1, w, w^2, w, 0, 0, 1, w^2, 0, w^2, 0, w, 1, 1, 0, w, w, 1, w, 0, w, 0, w^2, w, w, 0, w^2, w, 0, 0, w^2, 0, 0, w, 1, 0, 0, 1, 0, w, w, w^2, 1, 1, w, 0, 0, 1, 1, 1, 1, w, w, w^2, w, w, w^2, 1, w^2, w^2, w^2, 0, 0, 0, 1, w, w^2, 1, 0, w, 1, 0, 0, w, 1, 0, w, 1, w, w^2, w, 0, w^2, 1, 1, w, 1, 0, 0, 1, w^2, w, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, w^2, 0, w^2, w, w, w, w, 1, w, 0, 0, 0, w, w^2, 1, 0, 0, w^2, 0, w, 0, 0, w^2, w, 0, 0, 0, w, 0, 1, 0, w^2, 0, 0, w, 1, 0, 1, w^2, w, w^2, w, 1, 0, w, 1, w, w^2, w^2, 0, w, 0, w^2, 1, 1, w, w, w^2, w, 1, w^2, w^2, 0, w, 1, w, w^2, w, 1, 1, 0, 0, 1, 1, w, 1, 1, 0, 1, w^2, 1, w^2, w^2, w, w^2, w^2, 1, w, 1, w^2, w^2, w^2, 1, 0, w, 1, 1, 0, w^2, w, w, 0, w, w^2, 1, w^2, w, w^2, w^2, w, 1, w, w, w, w, w, w, 1, w, w^2, 0, w, 0, w, w^2, 1, 0, 0 ] where w:=Root(x^2 + x + 1)[1,1];
[2]:  [136, 9, 89] Linear Code over GF(2^2)
     Puncturing of [1] at { 137 }
last modified: 2009-12-14
Lb(136,9) = 88 is found by taking a subcode of: Lb(136,10) = 88 DaH Ub(136,9) = 96 follows by a one-step Griesmer bound from: Ub(39,8) = 24 follows by a one-step Griesmer bound from: Ub(14,7) = 6 is found by considering shortening to: Ub(10,3) = 6 GH
GH: P.P. Greenough & R. Hill, Optimal linear codes over GF(4), Discrete Math. 125 (1994) 187-199.
| Notes
 |