| lower bound: | 88 | 
| upper bound: | 93 | 
Construction of a linear code [132,9,88] over GF(4):
[1]:  [132, 9, 88] Linear Code over GF(2^2)
     code found via extension
Construction from a stored generator matrix:
[ 1, 0, w, w^2, 0, w, 1, w^2, w, w^2, 0, 0, 0, 0, w, w, 0, 0, w^2, 0, w, 1, 1, 0, 1, 0, 1, 1, 0, w, 0, 1, 0, 0, 1, 1, w, w^2, 1, w^2, 1, w, 1, 1, 1, w^2, w, w^2, w, 0, w, 1, w, w, 1, 1, w^2, w, w^2, w^2, w^2, 1, 1, w, w, 1, 1, w, 0, 1, w^2, 1, 0, w, 1, w, w, 1, w, 0, w, w^2, w^2, 1, 1, w^2, w^2, w, 1, 1, 1, w^2, w^2, 0, 1, w^2, w^2, w, w^2, 1, w, 0, w^2, 1, w^2, 1, 0, w^2, w^2, w, w^2, w, w^2, 1, w^2, 0, w, 0, w^2, 0, 1, w^2, w^2, w, 1, w^2, w, w^2, 0, w^2, 1, 1 ]
[ 0, 1, w^2, w, 0, w, 1, w^2, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, w, 1, w^2, 0, w^2, w, w^2, w, w, w, 0, w, 1, 0, w, w, w^2, w^2, 0, 1, w, 0, 1, w, w^2, w^2, 0, w, w, w^2, 0, w, w^2, 0, 0, 0, w^2, w^2, 1, 0, 0, 0, 0, w, w^2, 0, 1, w, w, 1, w, w^2, 0, w, w, 0, w^2, 0, 1, w, w, 0, 0, 1, 1, w^2, 0, w, 0, 1, w^2, w^2, w^2, 1, w^2, 0, 1, w^2, w^2, w, 0, w, 1, w^2, 0, w, w, 0, w^2, 0, w, w^2, w^2, w, w, 0, 0, w^2, 0, w, 0, w^2, 0, w, 0, 1, 1, w^2, 1, 0, w, 1, w^2, 0 ]
[ 0, 0, 0, 0, 1, 1, 1, 1, w^2, w^2, 0, 0, 0, 0, 0, 0, 0, 0, w, w, w, w, w^2, w^2, w^2, w^2, 0, 0, 1, 1, w^2, w^2, 0, 0, 0, 0, w^2, w^2, 1, 1, w, w, 0, 0, 1, 1, w^2, w^2, 1, 1, w, w, 0, 0, 0, 0, w^2, w^2, 0, 0, 1, 1, w, w, w, w, w, w, w^2, w^2, 1, 1, 1, 1, w, w, w, w, 1, 1, w^2, w^2, 1, 1, 1, 1, w^2, w^2, 0, 0, 1, 1, w, w, 1, 1, w^2, w^2, 1, 1, 1, 1, 1, 1, 1, 1, w, w, w^2, w^2, w^2, w^2, 1, 1, w, w, 1, 1, w, w, 1, 1, w^2, w^2, 1, 1, w^2, w^2, w, w, w, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, w^2, 0, 0, w, w, 1, 1, w, w^2, 0, w, 1, 0, w^2, w^2, 1, 0, 1, w^2, 1, w^2, w, 0, w^2, w, 0, 1, w^2, w^2, w, 0, w, w^2, 0, 1, 0, w, w, 1, 1, w, w, 0, 1, 1, 1, w^2, 1, w^2, 0, w^2, w, 0, 0, 0, 0, 1, w^2, 1, w, 0, w^2, 0, w^2, w, 1, 1, w^2, 1, w^2, w, 0, w, 1, w^2, w, w^2, w, 0, w^2, w, w, w, 1, w^2, 0, 0, w, w, w, w^2, w, w, 1, 1, w, w^2, w^2, w^2, 1, w^2, 0, 1, 0, 1, 0, 1, 0, 1, 0, w, w, w^2, w^2, w^2, w, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, w^2, 1, 0, 0, w, w, 1, 1, w^2, w, w, 0, 0, 1, w^2, w^2, 0, 1, w^2, 1, w^2, 1, 0, w, w, w^2, 1, 0, w^2, w^2, 0, w, w^2, w, 1, 0, w, 0, 1, w, w, 1, 0, w, 1, 1, w^2, 1, w^2, 1, w^2, 0, 0, w, 0, 0, 1, 0, 1, w^2, 0, w, 0, w^2, w, w^2, 1, 1, 1, w^2, w, w^2, w, 0, w^2, 1, w^2, w, 0, w, w, w^2, w, w, w^2, 1, 0, 0, w, w, w^2, w, w, w, 1, 1, w^2, w, w^2, w^2, w^2, 1, 1, 0, 1, 0, 1, 0, 1, 0, w, 0, w^2, w, w^2, w^2, w, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, w^2, w^2, 0, 0, w^2, 1, 0, w^2, 0, 1, w, w^2, w, 0, 0, w^2, w^2, 0, w, 0, w, 1, 1, 1, w^2, w, w, w^2, 1, 1, 0, 1, 0, w, 0, 1, w, 1, w^2, 1, w^2, 1, w^2, w^2, w^2, 1, 1, 1, w, w^2, w^2, w^2, 0, 1, 0, w^2, w, 1, 1, 1, w^2, 1, 1, 1, 0, w^2, w, 0, w, 1, w, 1, 1, w^2, 0, w, w^2, w^2, w, w, 1, 0, w, 1, w^2, 0, w^2, w^2, w^2, w, w^2, 0, w, 0, w^2, w, w, w, w, w^2, 1, w^2, w, w^2, w^2, 0, 1, w^2, w, 0, w, 0, 0, 0, 0, 0, w^2, w ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, w^2, w^2, 0, 0, 1, w^2, w^2, 0, 1, 0, w^2, w, 0, w, w^2, 0, 0, w^2, 0, w, 1, w, 1, 1, w, w^2, w^2, w, 1, 1, 1, 0, w, 0, 1, 0, 1, w, 1, w^2, 1, w^2, w^2, w^2, 1, w^2, 1, 1, w^2, w, w^2, w^2, 1, 0, w^2, 0, 1, w, 1, 1, 1, w^2, 1, 1, w^2, 0, 0, w, 1, w, 1, w, w^2, 1, w, 0, w^2, w^2, w, w, 0, 1, 1, w, 0, w^2, w^2, w^2, w, w^2, 0, w^2, 0, w, w, w^2, w, w, w^2, w, w^2, 1, w^2, w, 0, w^2, w^2, 1, 0, w, 0, w, 0, 0, 0, 0, w^2, w ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, w^2, w^2, 0, 1, 1, 1, 1, w, w, w^2, 1, w, 0, 1, 0, w^2, w, 0, w^2, 1, 1, w, 0, w^2, w, 1, 1, w^2, 1, 0, w^2, 1, 0, w^2, w, 0, 1, w^2, w, 0, 0, 0, 0, 1, 0, w, w, 1, w, 1, w, 1, w, w^2, w^2, w^2, 1, 0, 0, w^2, 0, w, 0, w, 0, w^2, w^2, 0, w, w^2, 1, w, 0, w^2, w, w^2, w^2, w^2, w, w^2, w^2, 1, w^2, 0, 0, w, 1, w, 0, w, w^2, 1, 1, w, w, w, 1, 1, w, 0, 0, w, 1, w^2, 1, w^2, w, w, w, w, w, w^2, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, w^2, w^2, 1, 0, 1, 1, w, 1, w^2, w, w, 1, 1, 0, w^2, 0, 0, w, 1, w^2, w, 1, w^2, 0, 1, w, w^2, 1, 0, 1, 1, w^2, w^2, 0, 0, w, w^2, 1, 0, w, 0, 0, 1, 0, w, 0, 1, w, 1, w, 1, w, w^2, w, w^2, w^2, 0, 1, w^2, 0, w, 0, w, 0, w^2, 0, 0, w^2, w^2, w, w, 1, w^2, 0, w^2, w, w^2, w^2, w^2, w, 1, w^2, 0, w^2, w, 0, w, 1, w, 0, 1, w^2, w, 1, w, w, 1, 1, 0, w, w, 0, w^2, 1, w^2, 1, w, w, w, w, w^2, w, 0, 0 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2016-03-31
Lb(132,9) = 87 is found by truncation of: Lb(133,9) = 88 DaH Ub(132,9) = 93 is found by considering shortening to: Ub(130,7) = 93 is found by considering truncation to: Ub(128,7) = 91 LP
LP: Follows from the linear programming bound.
| Notes
 |