| lower bound: | 82 | 
| upper bound: | 87 | 
Construction of a linear code [124,9,82] over GF(4):
[1]:  [126, 9, 84] Linear Code over GF(2^2)
     Code found via puncturing
Construction from a stored generator matrix:
[ 1, 0, 0, w, w, 1, 0, 0, 0, 0, w, w, 0, 0, 1, w^2, w, 0, w, 1, w, 1, 0, 0, 1, 0, w, 1, w, w, 1, 1, 0, w^2, 1, 0, 1, w^2, 1, 1, w^2, w, w, 1, w, w^2, w, 0, w^2, w^2, 1, 1, w^2, 0, 1, 1, 0, 1, w^2, 1, 0, w, w, 0, 1, w, 0, 1, w^2, w, w^2, 1, 0, w, 0, 1, 0, w^2, 1, 0, w^2, w, w, 1, 1, 1, 0, 1, 0, w, w, w^2, 1, w, 0, 1, w^2, w, 0, 1, w, w^2, 1, w^2, 0, w^2, 1, w, w, w^2, w^2, 1, w, w^2, w^2, 1, w^2, w, w, 1, w, w^2, 1, w, 0, w ]
[ 0, 1, 0, w, 1, w, 0, 0, 0, 0, 1, 1, 0, 0, w^2, 1, 0, w, 1, w, 1, w, w^2, w^2, w^2, w, w, 1, 0, 0, w^2, w^2, w^2, 0, 0, 1, w, 0, w^2, w^2, 0, 1, w^2, 0, w, w^2, 0, w, 1, 1, w^2, w^2, 0, w^2, w, w, 1, 0, w, 0, 0, w, w, 0, w, 1, 1, 0, w^2, w, w, 0, 0, w, w, w^2, w^2, 0, 1, 0, 0, 1, 0, w^2, w^2, w^2, 0, 1, w^2, 1, 0, 1, 0, w^2, 1, 0, w, w^2, 1, 0, 1, 0, 1, w^2, 0, w^2, 0, w^2, 1, 0, w^2, 1, w, w^2, w^2, 1, 0, 1, 0, w^2, 0, 1, w^2, 0, 1, w^2 ]
[ 0, 0, 1, 1, w, w, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, w, w, w, w, 0, 0, w^2, w^2, w, w, 0, 0, 0, 0, w, w, w^2, w^2, 1, 1, 0, 0, w^2, w^2, w, w, w^2, w^2, 1, 1, 0, 0, 0, 0, w, w, 0, 0, w^2, w^2, 1, 1, 1, 1, 1, 1, w, w, w^2, w^2, w^2, w^2, 1, 1, 1, 1, w^2, w^2, w, w, w^2, w^2, w^2, w^2, w, w, 0, 0, w^2, w^2, 1, 1, w^2, w^2, w, w, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, 1, 1, w, w, w, w, w^2, w^2, 1, 1, w^2, w^2, 1, 1, w^2, w^2, w, w, w^2, w^2, w, w, 1, 1 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, w^2, 0, 0, w, w, 1, 1, w, w^2, 0, w, 1, 0, w^2, w^2, 1, 0, 1, w^2, 1, w^2, w, 0, w^2, w, 0, 1, w^2, w^2, w, 0, w, w^2, 0, 1, 0, w, w, 1, 1, w, w, 0, 1, 1, 1, w^2, 1, w^2, 0, w^2, w, 0, 0, 0, 0, 1, w^2, 1, w, 0, w^2, 0, w^2, w, 1, 1, w^2, 1, w^2, w, 0, w, 1, w^2, w, w^2, w, 0, w^2, w, w, w, 1, w^2, 0, 0, w, w, w, w^2, w, w, 1, 1, w, w^2, w^2, w^2, 1, w^2, 0, 1, 0, 1, 0, 1, 0, 1, 0, w, w, w^2, w^2, w^2 ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, w^2, 1, 0, 0, w, w, 1, 1, w^2, w, w, 0, 0, 1, w^2, w^2, 0, 1, w^2, 1, w^2, 1, 0, w, w, w^2, 1, 0, w^2, w^2, 0, w, w^2, w, 1, 0, w, 0, 1, w, w, 1, 0, w, 1, 1, w^2, 1, w^2, 1, w^2, 0, 0, w, 0, 0, 1, 0, 1, w^2, 0, w, 0, w^2, w, w^2, 1, 1, 1, w^2, w, w^2, w, 0, w^2, 1, w^2, w, 0, w, w, w^2, w, w, w^2, 1, 0, 0, w, w, w^2, w, w, w, 1, 1, w^2, w, w^2, w^2, w^2, 1, 1, 0, 1, 0, 1, 0, 1, 0, w, 0, w^2, w, w^2, w^2 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, w^2, w^2, 0, 0, w^2, 1, 0, w^2, 0, 1, w, w^2, w, 0, 0, w^2, w^2, 0, w, 0, w, 1, 1, 1, w^2, w, w, w^2, 1, 1, 0, 1, 0, w, 0, 1, w, 1, w^2, 1, w^2, 1, w^2, w^2, w^2, 1, 1, 1, w, w^2, w^2, w^2, 0, 1, 0, w^2, w, 1, 1, 1, w^2, 1, 1, 1, 0, w^2, w, 0, w, 1, w, 1, 1, w^2, 0, w, w^2, w^2, w, w, 1, 0, w, 1, w^2, 0, w^2, w^2, w^2, w, w^2, 0, w, 0, w^2, w, w, w, w, w^2, 1, w^2, w, w^2, w^2, 0, 1, w^2, w, 0, w, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, w^2, w^2, 0, 0, 1, w^2, w^2, 0, 1, 0, w^2, w, 0, w, w^2, 0, 0, w^2, 0, w, 1, w, 1, 1, w, w^2, w^2, w, 1, 1, 1, 0, w, 0, 1, 0, 1, w, 1, w^2, 1, w^2, w^2, w^2, 1, w^2, 1, 1, w^2, w, w^2, w^2, 1, 0, w^2, 0, 1, w, 1, 1, 1, w^2, 1, 1, w^2, 0, 0, w, 1, w, 1, w, w^2, 1, w, 0, w^2, w^2, w, w, 0, 1, 1, w, 0, w^2, w^2, w^2, w, w^2, 0, w^2, 0, w, w, w^2, w, w, w^2, w, w^2, 1, w^2, w, 0, w^2, w^2, 1, 0, w, 0, w, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, w^2, w^2, 0, 1, 1, 1, 1, w, w, w^2, 1, w, 0, 1, 0, w^2, w, 0, w^2, 1, 1, w, 0, w^2, w, 1, 1, w^2, 1, 0, w^2, 1, 0, w^2, w, 0, 1, w^2, w, 0, 0, 0, 0, 1, 0, w, w, 1, w, 1, w, 1, w, w^2, w^2, w^2, 1, 0, 0, w^2, 0, w, 0, w, 0, w^2, w^2, 0, w, w^2, 1, w, 0, w^2, w, w^2, w^2, w^2, w, w^2, w^2, 1, w^2, 0, 0, w, 1, w, 0, w, w^2, 1, 1, w, w, w, 1, 1, w, 0, 0, w, 1, w^2, 1, w^2, w, w, w, w, w, w^2 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, w^2, w^2, 1, 0, 1, 1, w, 1, w^2, w, w, 1, 1, 0, w^2, 0, 0, w, 1, w^2, w, 1, w^2, 0, 1, w, w^2, 1, 0, 1, 1, w^2, w^2, 0, 0, w, w^2, 1, 0, w, 0, 0, 1, 0, w, 0, 1, w, 1, w, 1, w, w^2, w, w^2, w^2, 0, 1, w^2, 0, w, 0, w, 0, w^2, 0, 0, w^2, w^2, w, w, 1, w^2, 0, w^2, w, w^2, w^2, w^2, w, 1, w^2, 0, w^2, w, 0, w, 1, w, 0, 1, w^2, w, 1, w, w, 1, 1, 0, w, w, 0, w^2, 1, w^2, 1, w, w, w, w, w^2, w ] where w:=Root(x^2 + x + 1)[1,1];
[2]:  [124, 9, 82] Linear Code over GF(2^2)
     Puncturing of [1] at { 125 .. 126 }
last modified: 2016-04-01
Lb(124,9) = 80 is found by shortening of: Lb(125,10) = 80 BZ Ub(124,9) = 87 is found by considering shortening to: Ub(122,7) = 87 is found by considering truncation to: Ub(120,7) = 85 BK
BZ: E. L. Blokh & V. V. Zyablov, Coding of generalized concatenated codes, Probl. Inform. Transm. 10 (1974) 218-222.
| Notes
 |