| lower bound: | 60 |
| upper bound: | 63 |
Construction of a linear code [102,9,60] over GF(3):
[1]: [102, 9, 60] Linear Code over GF(3)
Code found by Axel Kohnert and Johannes Zwanzger
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 1, 2, 0, 1, 2, 0, 0, 2, 0, 1, 0, 2, 0, 1, 2, 0, 0, 2, 1, 1, 1, 0, 1, 0, 1, 1, 2, 0, 2, 2, 0, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 0, 2, 2, 1, 0, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 0, 0, 2, 0, 1, 1, 1, 1, 0, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 2, 0, 1, 2, 1 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 1, 0, 1, 2, 2, 2, 2, 0, 2, 1, 2, 1, 0, 2, 1, 2, 1, 2, 2, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 1, 0, 1, 0, 2, 2, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 1, 2, 0, 2, 0, 1 ]
[ 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 2, 2, 2, 1, 1, 2, 1, 2, 1, 0, 2, 2, 0, 2, 2, 2, 2, 0, 1, 2, 1, 1, 1, 2, 0, 2, 0, 1, 0, 2, 0, 0, 2, 2, 2, 0, 1, 1, 1, 0, 1, 0, 0, 1, 2, 2, 0, 1, 2, 2, 2, 0, 0, 1, 2, 2, 0, 1, 1, 1, 0, 1, 1, 0, 1, 2, 0, 2, 2, 1, 1, 0, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 2, 0, 1, 0, 0, 0, 0, 2, 2, 0 ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 2, 2, 1, 2, 2, 2, 0, 1, 2, 0, 2, 0, 0, 0, 2, 2, 0, 1, 0, 0, 1, 2, 0, 1, 1, 2, 0, 1, 1, 0, 1, 0, 2, 0, 2, 0, 2, 2, 1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 2, 0, 2, 1, 2, 0, 0, 2, 1, 2, 0, 2, 2, 0, 2, 0, 2, 0, 1, 2, 0, 2, 2, 1, 1, 2, 2, 1, 0, 1, 1, 2, 1 ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 2, 1, 0, 2, 1, 1, 1, 2, 0, 0, 0, 1, 2, 0, 0, 2, 1, 2, 0, 0, 0, 1, 2, 2, 2, 0, 1, 2, 1, 0, 0, 2, 0, 1, 2, 1, 0, 0, 1, 1, 1, 0, 2, 2, 2, 0, 2, 1, 0, 0, 1, 0, 1, 2, 1, 0, 2, 0, 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 2, 0, 2, 2, 0, 0, 2, 0, 1, 0, 2, 2, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 1, 2, 2, 0, 0, 1, 0, 1, 2, 1, 2, 0, 2, 2, 2, 0, 2, 1, 1, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 2, 0, 2, 1, 1, 0, 2, 0, 1, 1, 0, 0, 1, 2, 2, 1, 0, 1, 1, 2, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 0, 1, 0, 1, 2, 2, 1, 1, 0, 2 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 2, 0, 2, 1, 2, 1, 2, 2, 1, 0, 2, 1, 0, 2, 2, 1, 0, 2, 0, 0, 2, 1, 2, 1, 0, 0, 0, 2, 2, 0, 1, 0, 1, 1, 2, 1, 2, 0, 2, 0, 1, 0, 2, 2, 0, 0, 0, 0, 1, 2, 2, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 2, 0, 1, 1, 2, 1, 1, 2, 0, 2, 2, 0, 2, 1, 1, 2, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 1, 2, 2, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 1, 2, 0, 1, 1, 1, 0, 1, 2, 2, 2, 2, 0, 1, 1, 0, 1, 0, 0, 1, 0, 2, 2, 0, 1, 0, 1, 1, 1, 2, 0, 2, 0, 1, 2, 0, 2, 1, 2, 0, 1, 1, 0, 1, 1, 2, 1, 2, 0, 0, 1, 1, 1, 2, 0, 0, 0, 2, 2, 2, 0, 0, 1, 2, 0, 2, 1, 0, 2, 2, 0, 0, 2, 2, 0, 2, 0, 2, 0, 0, 2, 1, 1, 1, 1, 2, 0, 1, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0 ]
last modified: 2008-11-04
Lb(102,9) = 58 is found by truncation of: Lb(104,9) = 60 DGM Ub(102,9) = 63 follows by a one-step Griesmer bound from: Ub(38,8) = 21 follows by a one-step Griesmer bound from: Ub(16,7) = 6 vE2
vE2: M. van Eupen, Four nonexistence results for ternary linear codes, IEEE Trans. Inform. Theory 41 (1995) 800-805.
Notes
|