| lower bound: | 57 |
| upper bound: | 61 |
Construction of a linear code [88,8,57] over GF(4):
[1]: [88, 8, 57] Linear Code over GF(2^2)
code found by Tatsuya Maruta
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, w^2, w^2, w^2, w, 1, 1, 0, w, w^2, w, 0, 1, 0, w, 1, 1, w^2, w, w^2, w, 0, 0, 1, 1, w, 1, 0, w^2, 1, w, 1, w, 0, w, 1, 1, w, w^2, 1, 1, w^2, 0, w^2, 1, w^2, 1, w, 0, 1, w^2, 1, 1, 0, 0, w^2, w, w^2, w, 1, 1, w^2, 0, 1, 0, w^2, w, w^2, 0, 1, 1, w^2, w, w, w, 0, 0, w, w^2 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, w^2, w^2, w^2, w, 1, 1, 0, w, w^2, w, 0, 1, 0, w, 1, 1, w^2, w, w^2, w, 0, 0, 1, 1, w, 1, 0, w^2, 1, w, 1, w, 0, w, 1, 1, w, w^2, 1, 1, w^2, 0, w^2, 1, w^2, 1, w, 0, 1, w^2, 1, 1, 0, 0, w^2, w, w^2, w, 1, 1, w^2, 0, 1, 0, w^2, w, w^2, 0, 1, 1, w^2, w, w, w, 0, 0, w ]
[ 0, 0, 1, 0, 0, 0, 0, 0, w, 0, 0, 1, w, 0, 1, 0, 1, w, 1, 1, w^2, 0, 0, w, w, 0, 0, w, w, 1, w^2, w, w, w, w, w^2, w, 0, w, 0, w^2, 1, 1, 1, w, 0, w, 0, 0, 1, 0, 1, w, w, w, w^2, 0, 1, 0, 1, w^2, 1, 1, 1, 1, w^2, w, 1, 1, 0, 0, 1, 1, 0, 0, w^2, w, w, 1, w, 0, w, 0, 1, w, 0, w^2, 1 ]
[ 0, 0, 0, 1, 0, 0, 0, 0, w, w, 1, 1, 0, 1, w, w^2, 0, w, w^2, w, 1, 1, 0, w^2, 0, 0, 1, w^2, w^2, 1, 1, w^2, 0, 0, 1, 0, w^2, w^2, w, 1, w, 0, 1, w, w^2, 0, w^2, w^2, w, w, 0, 0, 0, 0, w^2, 0, 0, 0, w^2, 1, w^2, 1, 1, 1, 0, w, w, 1, w^2, w^2, 1, 0, w^2, 1, 1, w^2, w, w, 0, w^2, w^2, w^2, 1, w^2, 1, 1, w^2, w ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 1, w, 1, w, w, w, 0, w^2, w^2, w, 1, 1, w, 0, 1, w, w, 1, w^2, w^2, 0, 1, 1, 1, w, 1, w, 0, 0, 0, w, 0, 0, 0, 0, w^2, w^2, w, w, 0, w, w^2, 1, 0, w^2, 1, w^2, w, w, 0, 1, 0, 0, w, 1, 1, w, w, 1, 0, 0, w, 0, 1, 1, w^2, w, w^2, 0, w, w^2, 1, 0, 1, 1, w^2, w^2, 0, w^2, 0 ]
[ 0, 0, 0, 0, 0, 1, 0, 0, w^2, 1, 0, w^2, 0, w^2, 1, w^2, w^2, w, 0, 0, 1, 1, 0, 0, 1, 1, w^2, w, 1, 1, 1, 1, w, 1, 0, 1, 0, w, w^2, w^2, w^2, 1, 0, 1, 0, 0, w^2, 0, w^2, 1, 1, 1, w, 0, w^2, 0, w^2, w, w^2, w^2, w^2, w^2, w, 1, w^2, w^2, 0, 0, w^2, w^2, 0, 0, w, 1, 1, w^2, 1, 0, 1, 0, w^2, 1, 0, 0, w^2, w, 1, 1 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, w^2, w^2, w^2, w, 1, 1, 0, w, w^2, w, 0, 1, 0, w, 1, 1, w^2, w, w^2, w, 0, 0, 1, 1, w, 1, 0, w^2, 1, w, 1, w, 0, w, 1, 1, w, w^2, 1, 1, w^2, 0, w^2, 1, w^2, 1, w, 0, 1, w^2, 1, 1, 0, 0, w^2, w, w^2, w, 1, 1, w^2, 0, 1, 0, w^2, w, w^2, 0, 1, 1, w^2, w, w, w, 0, 1, 0, w^2, w^2, w^2 ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, w^2, w^2, w^2, w, 1, 1, 0, w, w^2, w, 0, 1, 0, w, 1, 1, w^2, w, w^2, w, 0, 0, 1, 1, w, 1, 0, w^2, 1, w, 1, w, 0, w, 1, 1, w, w^2, 1, 1, w^2, 0, w^2, 1, w^2, 1, w, 0, 1, w^2, 1, 1, 0, 0, w^2, w, w^2, w, 1, 1, w^2, 0, 1, 0, w^2, w, w^2, 0, 1, 1, w^2, w, w, w, 0, 1, w, w^2, w^2 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2006-10-04
Lb(88,8) = 57 MST Ub(88,8) = 61 follows by a one-step Griesmer bound from: Ub(26,7) = 15 is found by considering shortening to: Ub(25,6) = 15 is found by considering truncation to: Ub(23,6) = 13 BGV
MST: T. Maruta, M. Shinohara & M. Takenaka, Constructing linear codes from some orbits of projectivities, to appear in Discr. Math.
Notes
|