lower bound: | 48 |
upper bound: | 50 |
Construction of a linear code [81,8,48] over GF(3): [1]: [81, 9, 48] Quasicyclic of degree 27 Linear Code over GF(3) Construction from a stored generator matrix: [ 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 2, 0, 0, 1, 1, 2, 1, 0, 2, 2, 0, 1, 0, 2, 1, 1, 2, 2, 0, 2, 1, 1, 2, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 2, 1, 1, 2, 1, 0, 0, 2, 2, 0, 1, 2, 1, 1, 1, 2, 0, 1, 0, 0, 2, 2 ] [ 0, 1, 0, 0, 0, 1, 0, 2, 2, 0, 1, 0, 0, 0, 1, 0, 2, 2, 0, 1, 0, 0, 0, 1, 0, 2, 2, 0, 1, 0, 0, 0, 1, 0, 2, 2, 1, 2, 1, 1, 1, 2, 1, 0, 0, 2, 0, 2, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 2, 0, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 2 ] [ 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 2, 0, 2, 2, 0, 2, 2, 0, 0, 0, 1, 2, 2, 0, 1, 1, 2, 1, 1, 2, 0, 0, 1, 2, 2, 0, 1, 1, 2, 0, 0, 1, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 2, 2, 0, 0, 0, 1, 1, 1, 2, 0, 0, 1, 1, 1, 2, 2, 2, 0 ] [ 0, 0, 0, 1, 0, 2, 0, 1, 2, 0, 1, 2, 0, 0, 0, 1, 0, 2, 1, 0, 2, 0, 1, 2, 0, 0, 0, 0, 2, 1, 2, 0, 1, 2, 2, 2, 0, 0, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 1, 1, 2, 1, 0, 2, 0, 1, 2, 2, 2, 0, 2, 1, 2, 1, 0, 1, 2, 0, 1, 1, 1, 0, 0, 0, 1, 0, 2, 0, 1, 2 ] [ 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 1, 2, 0, 2, 1, 2, 2, 2, 2, 0, 1, 2, 1, 0, 0, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 0, 2, 0, 1, 1, 0, 2, 2, 2, 2, 1, 2, 0, 0, 2, 1, 1, 1, 1, 2, 0, 1, 0, 2, 1, 1, 1, 1, 2, 0, 1, 0, 2, 1, 0, 0, 0, 1, 2, 0, 2, 1, 0 ] [ 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 0, 1, 2, 1, 2, 0, 2, 1, 0, 2, 1, 0, 0, 2, 1, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 1, 2, 2, 0, 1, 2, 0, 1, 2, 1, 0, 1, 0, 2, 1, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 2, 1, 2, 0, 0, 1, 2, 2, 1, 0, 0, 2, 1, 2, 1, 0 ] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 2, 1, 1, 0, 2, 2, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 1, 2, 1, 0, 1, 0, 2, 0, 1, 2, 2, 0, 1, 1, 2, 0, 1, 2, 0, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2 ] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 1, 2, 2, 0, 1, 1, 2, 0, 0, 1, 2, 0, 1, 2, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1, 2, 0, 0, 2, 1, 1, 0, 2, 2, 1, 0, 0, 2, 1, 2, 1, 0, 1, 0, 2, 2, 1, 0, 2, 1, 0, 2, 1, 0 ] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ] [2]: [81, 8, 48] Linear Code over GF(3) Subcode of [1] last modified: 2001-12-17
Lb(81,8) = 48 is found by taking a subcode of: Lb(81,9) = 48 BE Ub(81,8) = 50 follows by a one-step Griesmer bound from: Ub(30,7) = 16 is found by considering shortening to: Ub(29,6) = 16 is found by considering truncation to: Ub(28,6) = 15 HHM
HHM: N. Hamada, T. Helleseth, H.M. Martinsen & Ø. Ytrehus, There is no ternary [28,6,16] code
Notes
|