| lower bound: | 146 |
| upper bound: | 150 |
Construction of a linear code [231,8,146] over GF(3):
[1]: [121, 116, 3] "Hamming code (r = 5)" Linear Code over GF(3)
5-th order HammingCode over GF( 3)
[2]: [121, 5, 81] Cyclic Linear Code over GF(3)
Dual of [1]
[3]: [119, 5, 79] Linear Code over GF(3)
Puncturing of [2] at { 120 .. 121 }
[4]: [40, 4, 27] Linear Code over GF(3)
ResidueCode of [3]
[5]: [38, 4, 25] Linear Code over GF(3)
Puncturing of [4] at { 39 .. 40 }
[6]: [13, 3, 9] Linear Code over GF(3)
ResidueCode of [5]
[7]: [11, 3, 7] Linear Code over GF(3)
Puncturing of [6] at { 12 .. 13 }
[8]: [4, 2, 3] Linear Code over GF(3)
ResidueCode of [7]
[9]: [82, 4, 72] Constacyclic by w Linear Code over GF(3^2)
ConstaCyclicCode generated by w^6*x^81 + 2*x^80 + w^6*x^79 + x^78 + 2*x^77 + w^6*x^76 + w^6*x^75 + w^6*x^73 + w^2*x^72 + x^71 + w^7*x^70 + w^2*x^68 + w^2*x^67 + w^2*x^66 + 2*x^65 + w^2*x^64 + w^3*x^63 + w^6*x^62 + w^2*x^60 + w^7*x^59 + 2*x^58 + w^2*x^57 + w^6*x^56 + w^5*x^55 + w*x^54 + w^2*x^53 + w^7*x^52 + x^51 + w^2*x^50 + w^3*x^49 + w*x^48 + w^6*x^47 + w^6*x^46 + 2*x^45 + w^2*x^44 + w^7*x^42 + w^2*x^41 + w^5*x^40 + w^6*x^39 + w^2*x^38 + w^5*x^37 + w^5*x^36 + 2*x^35 + 2*x^34 + x^33 + x^32 + w^5*x^31 + w^7*x^30 + 2*x^29 + w^7*x^28 + w^3*x^27 + w^7*x^26 + w^5*x^24 + w^3*x^23 + w^3*x^22 + w^6*x^21 + w^5*x^20 + w^6*x^19 + w^7*x^18 + w^6*x^16 + x^15 + w^3*x^14 + x^13 + w^2*x^11 + w^3*x^10 + w^2*x^9 + w^7*x^8 + w^6*x^7 + w^5*x^6 + x^5 + w^2*x^4 + 1 with shift constant w
[10]: [58, 4, 49] Linear Code over GF(3^2)
Puncturing of [9] at { 1, 2, 3, 4, 5, 6, 7, 13, 20, 24, 25, 27, 30, 33, 34, 38, 39, 44, 47, 51, 57, 70, 76, 82 }
[11]: [232, 8, 147] Linear Code over GF(3)
ConcatenatedCode of [10] and [8]
[12]: [231, 8, 146] Linear Code over GF(3)
Puncturing of [11] at { 232 }
last modified: 2003-11-04
Lb(231,8) = 144 is found by shortening of: Lb(234,11) = 144 is found by truncation of: Lb(243,11) = 153 XBC Ub(231,8) = 150 follows by a one-step Griesmer bound from: Ub(80,7) = 50 follows by a one-step Griesmer bound from: Ub(29,6) = 16 is found by considering truncation to: Ub(28,6) = 15 HHM
XBC: Extended BCH code.
Notes
|