| lower bound: | 130 |
| upper bound: | 135 |
Construction of a linear code [188,8,130] over GF(4):
[1]: [190, 8, 132] Linear Code over GF(2^2)
Code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, w, w^2, 1, 0, w, 0, w^2, w^2, 0, w, 1, 1, w^2, w, w, 1, 0, w, 0, 1, 1, 1, 0, w^2, w, w^2, w^2, w, w, w, 1, w, 1, w, 1, w, 1, w, w, w, w^2, 1, 1, w^2, 0, 1, w, w^2, w, w^2, w, w^2, w, w, w, 0, 1, 0, w^2, w, w^2, w, 0, w^2, w, 1, w, w^2, 1, 0, 0, 0, w^2, w^2, w, w^2, w^2, 0, w, 1, w^2, 1, w, w, 0, 0, 0, w, w, 0, w, w^2, w^2, w, w^2, 0, 1, 1, w, w, 0, 0, 0, 0, 0, w^2, w^2, 0, w, w^2, 0, 1, 0, w^2, w, 1, w^2, w^2, 1, 0, 1, w^2, 0, w^2, w, 0, 1, w, 0, 1, w^2, w^2, w, 1, w, w^2, w, w^2, 0, 0, w, 0, 0, w, 1, 0, 1, w, 0, w, w, w^2, 1, 0, w, w, 0, w^2, w, 0, w^2, w, 0, w, 1, w^2, w^2, 1, w, w^2, w^2, w^2, w^2, 0, w^2, 1, w^2, w^2, 1, 1 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, w, 0, 1, w^2, 0, 0, 1, 1, 1, 0, w, 0, 1, w, 0, 0, 1, w, 0, w, w^2, 0, w^2, 0, 1, w^2, 1, w, w^2, w^2, w, w, 0, w, 1, w, w, 1, w^2, 1, w, w, w^2, 0, w^2, w, w, 0, w^2, w, 1, 0, 0, w, 1, w, w, 1, 1, w^2, w^2, 0, 0, 1, 1, w, 1, w^2, w, 1, 0, 0, w^2, 1, 1, w, w^2, w^2, w^2, w, w, w, w^2, 0, w, 1, 1, 1, 0, 1, 0, 1, w, 1, w, 1, 0, w, 1, 1, 1, w^2, w, w, 0, w, w^2, w^2, w, 1, w^2, 1, 1, 1, w^2, w^2, 0, 1, 1, w^2, w, 0, 1, w^2, w, 0, w, 1, 1, 1, w^2, w, w, 0, 1, w^2, 0, 1, 1, w, 1, 1, w^2, 1, 0, 0, 1, 1, 1, 0, w, w, w, 0, w, w, w^2, w^2, 0, w, w, w, 1, 1, w, 1, w^2, 0, 0, 1, 1, 0, w, w^2, w^2, w^2, 1, w^2, w^2, w, 0, 0 ]
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, w^2, 0, w, w, w, w^2, 0, w^2, 0, w^2, w^2, 0, 0, w^2, 1, w, w, w^2, 1, w^2, 0, 0, 0, w, w^2, w, w^2, 1, 1, w^2, w^2, 0, w^2, w^2, 1, w, w^2, w^2, 0, w^2, 0, 0, 1, w, 0, w^2, w^2, w, 1, w^2, w, 1, 1, w^2, w, w^2, w, w^2, w^2, 0, w, w^2, 0, w, 0, w^2, w, 0, w^2, 0, w^2, w, 1, w^2, 0, 0, w^2, 1, 0, 0, 1, w^2, w^2, w, w, 0, w^2, w^2, 0, 0, w^2, w, 1, 1, w, 1, 0, 1, 1, w, 1, w, 1, w, w^2, w, w, 1, w^2, w, 0, 1, 0, 1, w, w, 1, 0, 0, w^2, w, w, 1, 0, 1, w, w, w, 0, w^2, 1, w^2, 0, w^2, w^2, 1, 1, 0, 0, w^2, w, 1, 1, 1, w^2, w^2, w^2, 0, 0, w^2, w^2, 0, 1, 0, w, 0, 0, 0, w^2, 1, w, w^2, 1, 1, 0, 0, 0, 0, 0, 1, w, w^2, w, w, 1, w, w, 0 ]
[ 0, 0, 0, 1, 0, 0, 0, w^2, w^2, 0, w^2, w, 0, w, w^2, w, 0, w, 0, 1, w^2, 0, w, w, w, w^2, w, w, 1, 0, 0, w^2, 0, w, w, w, 1, w^2, 0, w^2, 0, w^2, w^2, w, 0, 1, w^2, 1, 0, w, 0, w^2, 0, 0, 0, 1, w^2, w^2, w, 1, 1, w, w, w^2, w^2, 1, w, w, w, 1, w, 0, w^2, 1, 0, w, w^2, 1, w^2, w^2, w, 1, 1, 0, w, w, w^2, w^2, w^2, w^2, 1, w, 0, w, w, 1, 1, w^2, 1, 0, 1, 1, 1, w, w, w^2, 0, w^2, w^2, w, w, 0, w, 0, w, w, w, 1, w^2, w, w^2, w, 1, w, 0, w^2, w^2, w, w^2, 1, 1, 1, w, 0, w, 1, 0, 0, 1, w, 0, w, 0, 1, 0, 0, 1, 1, w, 0, w, w^2, 0, w^2, 1, w^2, 1, w, w^2, 0, 1, 0, w, w, w^2, w^2, 1, 1, w^2, w^2, w, w^2, w^2, w, 0, 1, w^2, w^2, w, w, 1, 0, w^2, 0, 1, w^2, 1, 0, w^2, w^2 ]
[ 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, w^2, 0, 1, 0, w^2, w^2, 0, 0, 0, 1, w^2, 1, w, w^2, 0, 1, 0, 0, 0, w^2, 1, 1, w^2, w, 1, 1, w^2, w^2, 0, w^2, w^2, w^2, 0, w^2, 0, w^2, w^2, 0, w, w, w, 1, 0, 1, w, w^2, w, w^2, 1, 1, w^2, 0, 1, 1, 1, 1, 0, w^2, w^2, 0, 1, w, w, w^2, 1, w^2, 0, w, 1, w^2, 0, w, w^2, 0, 0, 0, 0, w, 0, w, 0, 1, w, w^2, 1, 1, w, w^2, 1, 0, 1, 1, 0, w^2, 1, 0, 1, w, w, 1, w^2, w^2, w^2, w^2, 1, 1, w^2, w, 1, w^2, w, 0, w, 0, w, 1, 1, w, w^2, w, w^2, 1, 0, w, w, w^2, 0, 1, w, 0, 0, w^2, 0, 1, w^2, w, 1, 0, 0, 1, 1, 0, 1, 1, w, w, w, 0, w, w, 0, 1, 1, 1, w, 1, 0, 0, w^2, 0, 0, w^2, w^2, w, 0, 1, w^2, 0, w, w, 1, w, 0, 1, 0, 1, w, 0, w^2, 0 ]
[ 0, 0, 0, 0, 0, 1, 0, w, w, 0, 1, 0, 0, 1, 0, 1, 0, 0, w, w, 0, 1, w^2, 1, w, 0, w^2, w^2, w^2, 0, w, 0, w^2, 1, w, w, 0, w, w, w, w^2, 0, w^2, w, w, w, 1, w^2, 0, 0, w^2, w, w, w, 1, w^2, w, 1, 0, 0, 0, w, 1, 1, 0, 0, w^2, w, w^2, w^2, w^2, 1, w^2, 1, 0, 0, 1, w^2, 1, 1, w^2, 0, 1, 1, 1, 0, 1, w, 1, w^2, 0, w, 0, 1, 1, 0, 0, w^2, w, 1, 1, 1, 0, 0, 1, 1, w^2, w^2, 1, 0, w, 1, w^2, w, w^2, w, 0, 0, w^2, w, 1, w, w, w^2, 1, 1, w, w, w^2, 1, w, 1, 1, 0, w, w, 0, 0, 1, 1, 0, 1, 0, 1, w, 1, 1, w, 0, w^2, w, 0, w^2, w^2, 0, 0, 0, w^2, w^2, w^2, 1, w, w^2, 0, 1, w^2, 0, 1, 1, w, 1, w, 1, 0, 1, 0, w, 0, 1, 1, w^2, 0, 0, 0, 0, w, w^2, w, w, 0 ]
[ 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, w, w^2, w^2, w, 0, w, w, w, w, w^2, 1, 1, w^2, 0, w^2, 1, 0, w^2, w^2, w, w, w, w, 1, w, w^2, 1, 0, w, w^2, 0, 1, 1, w, 1, w^2, 0, w^2, w, w^2, 0, 0, 0, 0, w^2, w^2, w^2, 0, 1, 0, 1, w^2, 1, 0, w^2, 0, w, w^2, w^2, 1, w, w^2, 1, 1, 0, w^2, 1, 1, w^2, w, 0, w^2, 1, 0, w^2, 0, 0, 0, 0, w^2, 0, 1, 1, 0, w^2, 0, w^2, w^2, 1, w, w^2, 1, 0, w, w^2, w^2, 1, w, 0, 1, w, 0, w^2, w, 0, w^2, 1, w^2, w^2, 0, 1, w, 1, 0, w^2, 1, 1, w, w^2, w, 1, w^2, 0, w^2, 0, 1, w, 0, 1, 1, w^2, w^2, 1, w^2, w, 1, w, 0, w, w^2, 1, w^2, 0, w^2, 0, 1, 0, w, 1, 0, 0, w^2, w, w, 1, w, w, w, w^2, 1, 1, w, w^2, w, 0, 0, w^2, 1, 1, 0, w^2, w, 0, 0, 1, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, w, 0, w, w^2, w, w, 1, w^2, 1, w^2, w, 1, w^2, 0, w, w^2, 0, 0, w^2, w, 0, w, w, w, w, 1, w, 1, 0, 0, 1, w, 0, w, 1, 0, 1, w, w, 0, w, 1, 1, w, 0, w, 0, 1, w, 0, 1, w, w^2, w^2, w, 1, w, 0, w^2, w^2, 1, 0, w^2, w, w^2, w, 0, w, w^2, 1, w^2, 1, w, w^2, 1, w^2, w^2, 1, w^2, 0, 0, w^2, w, w^2, 0, w^2, w, 0, 0, w^2, w^2, 1, w, 0, w^2, w, 0, w^2, 0, w^2, 1, w^2, 1, w^2, 0, w^2, 0, 0, 1, 0, w, w^2, 0, w^2, 0, 1, w, 0, w^2, 0, w, 1, 1, w, w, 1, w^2, w^2, w^2, w^2, 1, 0, 1, w^2, 1, 1, 0, 0, w^2, w^2, w, 1, w^2, w^2, w^2, w, w^2, w^2, 1, 1, 0, 0, w, 1, w^2, w, w^2, 0, w^2, 1, 0, w, 1, 0, w^2, 0, 0, 0, 0, 1, w, w^2, 0, w^2, w^2, 1, w^2, w, w^2 ] where w:=Root(x^2 + x + 1)[1,1];
[2]: [188, 8, 130] Linear Code over GF(2^2)
Puncturing of [1] at { 189 .. 190 }
last modified: 2012-08-21
Lb(188,8) = 128 is found by lengthening of: Lb(187,8) = 128 GW2 Ub(188,8) = 135 is found by considering truncation to: Ub(186,8) = 133 Da1
GW2: M. Grassl & G. White, New Codes from Chains of Quasi-cyclic Codes, ISIT 2005.
Notes
|