| lower bound: | 124 |
| upper bound: | 129 |
Construction of a linear code [180,8,124] over GF(4):
[1]: [180, 8, 124] Linear Code over GF(2^2)
Code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, w^2, 0, w^2, 0, 0, 0, 0, w^2, 1, 1, 1, w, w^2, 0, 0, w, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, w^2, w, 1, 1, 0, w^2, 0, w^2, w, w, 0, 1, w^2, 1, 1, w^2, w, w^2, 1, w^2, w, 1, w, 1, w^2, w, 1, 0, w, 1, 1, 0, w, w, w, 0, 0, 1, 1, 1, w, 1, w, 0, w^2, 1, 0, 1, 1, w, w^2, w, 0, w, w^2, w^2, 0, w, w, 1, 1, w, w^2, 1, w^2, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, w, 1, w, 0, w, 1, 1, w^2, 1, w^2, 0, w^2, w, w^2, 0, w, w, 1, 0, 0, w, w, 1, w^2, w^2, w^2, w, w^2, w, 1, w, w^2, 0, 0, 0, 0, 0, 1, 1, 1, w, w, 1, w, 1, w^2, w, 0, w^2, 0, 1, 0, w^2, w^2, 1, 0, 1, 1, 1, w, w^2, w, 1, w^2, w^2, 0, w, w, 0, w, w, 0 ]
[ 0, 1, 0, 0, 0, 0, 0, w^2, w, w^2, 1, 0, 0, 1, 0, w, 0, 1, 0, 0, 0, w, 1, w, 0, 0, w^2, 1, w^2, w^2, w, w^2, 1, w^2, w, 0, 1, 1, 0, w, w^2, 0, 0, 1, 1, 1, 1, w, w, w, w, w^2, w, w, w, 0, 1, 1, w, 1, 0, 0, w, w^2, w^2, w, 1, w^2, w, w, w^2, 1, w, w, w, 0, 0, 0, w^2, 0, 0, w^2, 1, w, 0, w^2, 1, w^2, 0, 0, 0, 0, 0, 1, 1, w^2, 0, 0, w^2, w^2, w^2, 0, 1, 0, w^2, w, 0, 1, w^2, 0, 1, 1, w^2, 0, w, w, w, 0, w^2, w, w, w^2, 0, w^2, 0, w^2, w^2, 1, 0, w, w^2, w^2, 0, 1, 0, 0, 0, 1, 1, w^2, 1, 1, w, w^2, 0, 1, 1, w^2, 0, w, 0, w^2, 0, 1, 1, w, 1, w^2, 1, 1, w, w^2, w, w, w, w^2, w, w, w^2, 1, 1, w^2, w^2, w, w, 1, w^2, 1, w^2, 1 ]
[ 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, w, w^2, 1, 0, w, 1, w^2, 0, w^2, 1, 0, w^2, 1, 0, 0, w^2, 0, 1, 0, 0, 1, w^2, w, w^2, w, 1, w^2, w^2, 0, 1, w^2, w^2, 0, w, w, w, 1, 1, 0, w^2, 0, 0, w^2, 1, 1, 1, 1, 1, w, 1, 0, w, 1, 0, w, w^2, w^2, 0, 1, w^2, w^2, 0, w, w^2, w^2, w^2, w, 0, 0, w^2, w^2, 1, 1, w^2, w^2, w, 1, w, 0, 0, w, 0, 1, w^2, w, w, w^2, 1, w^2, w, w, w, w^2, 1, w, 0, w, w^2, 1, 1, w, 1, 1, w^2, w, 1, 0, 1, w^2, w^2, w, w^2, w, w, w^2, 1, w, 1, 1, w^2, w, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, w^2, 0, 0, 1, w, 1, w^2, w^2, w, 0, 1, w, 1, w, 0, 1, w, w^2, w, w^2, w^2, 1, 1, w^2, 1, w, w^2, 0, w, 1, w^2, w, w^2 ]
[ 0, 0, 0, 1, 0, 0, 0, 1, w^2, w^2, w^2, 0, w^2, 1, 1, 0, w, w, w, 1, w, w^2, w, 0, w, w, 0, 1, w, w^2, 0, w^2, w^2, w, 1, w, w, 0, w^2, 0, 0, 1, w, w^2, 1, 1, 1, 1, 0, 1, w, w^2, w, w^2, 1, 0, w, w^2, w, w^2, 0, w, 1, w, w^2, 1, w, w^2, 0, w^2, w, w^2, w, 0, 0, 1, w, 0, w, 0, 0, w, 1, w, 0, w, w^2, 0, w^2, 1, 0, 1, w^2, 0, 1, w, w, 1, w^2, w, 0, w^2, w, 0, w, 0, 0, w^2, 0, w^2, w^2, 1, w, w^2, 0, w, 0, w, 1, 1, 0, 1, w, w^2, w, 1, w^2, w, 1, 0, w, 0, w, 0, w, w^2, 0, 1, 0, 1, 1, 1, w, w^2, 0, 0, w, w^2, 0, w^2, 1, w^2, w^2, 1, w, w, 0, w^2, 1, 0, w^2, 1, 0, 1, 1, 0, 1, 0, 0, 1, w^2, w^2, w^2, 1, 0, 1, 1, 0, w, 0 ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, w, 0, w^2, 0, 1, 0, 0, w, 1, 1, 1, 0, w, 1, w^2, 0, w^2, 1, 1, w^2, 0, w, w, 1, 0, 1, 1, 1, 0, 1, 1, w^2, 0, w^2, 1, 1, w, 1, 0, w, 1, 1, 1, 1, w, 0, 0, w, w^2, 0, w, w^2, w^2, 1, 1, 0, w^2, w^2, 1, w, w^2, w, 1, 1, 1, w, 0, 0, w, w^2, w, 0, 0, w, w, 0, w^2, w^2, 0, w^2, w, 1, w, 0, w^2, 0, w, w^2, 1, 0, 0, w, w, 0, w, w, 0, 0, 1, 1, 0, w^2, 1, w^2, w^2, w, w, 1, 1, w, w, w, 1, 0, w^2, 1, w, 1, 0, w, w, 0, w^2, 1, 1, w, 1, 0, w^2, w^2, w^2, w, 0, w^2, 1, 1, w^2, 0, 0, w^2, 0, 1, 1, 1, w^2, w, w^2, 1, 0, w, 1, 1, 1, 1, 0, 1, 1, 0, w, 0, w^2, 1, 1, w^2, 1, 1, w, 1, w, w^2 ]
[ 0, 0, 0, 0, 0, 1, 0, 0, w, w, 1, 0, 1, w^2, 1, 0, 1, 0, w, w^2, w^2, 0, 1, 1, 1, w, 1, w^2, w^2, w^2, w^2, w, w, 1, w^2, 0, w, 1, w, w^2, w, w, 0, w, w^2, w, 0, 1, 0, w, 0, w^2, w, 0, 1, 0, w, 0, 0, w^2, w^2, w^2, 1, 1, 1, 0, 0, w, 1, w^2, w^2, 0, 1, 1, 1, 1, w^2, w^2, 1, 1, 1, w, w, 1, w, 0, w, 1, 0, 1, 1, 0, w, 1, 0, w, 0, 1, w^2, 0, w, w, 1, w, w, w^2, w, 0, w^2, 0, w, w, 1, w, 1, 0, w^2, w^2, w^2, w^2, 0, w, w^2, w^2, w, 1, 1, w^2, 1, 0, w^2, w^2, w^2, w^2, w, 0, 1, w, w^2, 0, w^2, w^2, 1, w, 0, w, 1, 0, w^2, 0, w, 0, w, w, 0, 0, 1, 0, w^2, 1, 1, 1, w, 0, w^2, w, 1, w^2, w, w^2, 0, 0, 1, w, w, w, w^2, 0, 0, w^2 ]
[ 0, 0, 0, 0, 0, 0, 1, 1, w^2, w^2, 0, 0, 1, 0, w, w^2, w, w^2, 1, 1, 1, w, w^2, w^2, w^2, w^2, 0, w, w, w, w, w^2, w^2, 0, w, 0, w^2, 0, w^2, w, w^2, w^2, 0, w, w^2, w, 0, 1, 0, w, 0, w^2, 1, w^2, w^2, w, 0, w, w, 1, w, w, 0, 0, 0, 1, 1, w^2, 0, w, w^2, 1, 0, 0, 0, 0, w, w^2, 1, 1, 1, w, w, w, 1, w^2, 1, w, w^2, w^2, w^2, w, 0, w^2, w, w^2, 1, 0, w, 1, w^2, w^2, 0, w^2, w^2, w^2, w, 0, w^2, 1, w^2, w^2, 0, w^2, 0, 1, w^2, w^2, w^2, 0, w^2, 1, 0, 0, 1, w, w^2, 1, w^2, w, 1, 1, 1, w, w^2, 1, 0, w^2, w, 1, w, w^2, w, 0, 1, w, 1, 1, w, 1, w^2, 1, w^2, w^2, 1, 1, 1, 0, w^2, 1, 1, 1, w, 0, w^2, 1, w, 0, 1, 0, w, w, w^2, 0, 0, 0, 1, w, w, w ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2008-11-04
Lb(180,8) = 122 is found by shortening of: Lb(181,9) = 122 is found by truncation of: Lb(182,9) = 123 MST Ub(180,8) = 129 is found by considering truncation to: Ub(179,8) = 128 Da1
MST: T. Maruta, M. Shinohara & M. Takenaka, Constructing linear codes from some orbits of projectivities, to appear in Discr. Math.
Notes
|