| lower bound: | 118 |
| upper bound: | 123 |
Construction of a linear code [172,8,118] over GF(4):
[1]: [172, 8, 118] Linear Code over GF(2^2)
Code found by Axel Kohnert and Johannes Zwanzger
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, w^2, 0, 0, 1, w, w^2, 0, w, w, 1, 0, w, 1, 0, w, 0, w^2, w^2, 1, w^2, 1, 1, 0, 1, 1, 0, w^2, w, 0, 0, 1, w^2, 1, 0, w^2, 0, 0, 1, 0, 0, 1, 0, 0, 1, w^2, w^2, 1, w^2, 1, 1, 0, 0, w^2, 0, w, 1, 1, 0, w^2, 0, 1, 0, 1, w^2, w, w, w, w^2, 1, w^2, 0, 0, w, w^2, w, w, w^2, 1, w^2, w, 1, 0, 0, w^2, 0, 1, w^2, w, 1, w, 1, w, 1, 1, 1, w^2, w, 0, w^2, 0, 1, 1, w^2, 1, w^2, w, w, w, 1, w, 1, w, w^2, w^2, w^2, 1, 0, 1, 0, w^2, w^2, 0, 1, w, w, w^2, 0, w, 0, w^2, 0, 1, 1, w, w, 0, w^2, w^2, w^2, w^2, 1, 1, w, 0, 1, w^2, w^2, w^2, w, 0, 1, w, w^2, 0, 0, w, 0, w^2, 0, 1, 0, w^2, 0, w, 0, w^2, w ]
[ 0, 1, 0, 0, 0, 1, 0, 0, w^2, w^2, 0, 0, 0, w, 1, w, 0, w, 1, w, w, w^2, 0, 0, 1, w, 1, 1, 0, w^2, w^2, w^2, 1, w, 1, w^2, 0, w^2, w, w, 0, w, w, 0, 0, w, 1, 1, 1, w^2, w^2, w^2, 1, 0, w^2, 0, w, 0, 1, w, w, 1, w, 0, w, 0, 1, w^2, 0, w, 0, w^2, w, w^2, 1, w^2, w^2, 1, w^2, 1, w^2, 0, w, 0, 0, w, w^2, 1, 1, w^2, w^2, w, w, w^2, 1, w^2, 0, 1, w, 0, w, 0, 1, w, w, 0, w, 0, 0, w, 1, 1, w, 1, w^2, 1, 1, w^2, w, w, w^2, 1, 1, 1, w^2, 1, 1, 0, 0, w^2, w, 1, w, 0, 0, w, w, w, 1, w^2, 0, w^2, 0, w^2, 0, 1, w^2, w^2, w^2, 1, 1, w, w, 1, 0, 1, 1, w^2, w, w^2, 1, 1, 1, 1, 0, w^2, w, w, 1, w, w, w^2 ]
[ 0, 0, 1, 0, 0, 0, 0, 0, w, 0, 1, 0, 1, w^2, w, 1, 0, w, w^2, w^2, w, w, 0, 1, 0, w^2, 1, 0, 1, 1, 1, w^2, 1, 0, w^2, 0, w, w^2, w, w^2, 1, 0, w^2, 1, w, w^2, w^2, w^2, w, 0, w, w^2, 0, w^2, 1, w, 1, 1, 0, w^2, w^2, w^2, 0, w, w^2, w, 0, 0, 1, w, w^2, w^2, 1, w^2, 0, 0, w, 0, 0, 0, 1, w^2, w, 1, w, w, w, w, 0, 0, 1, w^2, 0, w, 1, w^2, w^2, w^2, 1, w^2, w^2, w, 0, w, w^2, w^2, 1, 0, 0, w^2, w, 1, 0, w^2, w, 0, 0, w^2, 1, 1, 0, 1, 0, w, 0, 1, w^2, w, w^2, w, w^2, w^2, w, 0, 1, w, w, w^2, 1, 1, w^2, w^2, 1, 1, 0, 0, 0, 1, w, 0, 0, 1, w^2, w^2, w, 1, 0, 0, 0, 0, w, w, w^2, 1, 0, w^2, 0, w^2, 1, w^2, 0, w ]
[ 0, 0, 0, 1, 0, w, 0, 0, w^2, w, w^2, 0, 0, w^2, 0, 0, w, w, w, 1, w, w^2, w^2, 0, w, 0, w, w^2, w, 0, w, 1, w, 1, w, w, 0, w, 0, w, w^2, 0, w^2, w, w, w^2, 1, w^2, w, 1, w, w^2, 1, 1, 1, w, 0, 1, w^2, w, w, w, w, w, 0, w^2, 0, w^2, 0, 0, 0, 0, w, w^2, w, w, w^2, w, 1, w^2, w, 0, w, w^2, w, 0, w, w, 1, 1, w^2, 1, w, 1, 1, 1, 1, w, w, 1, w, w, 0, 0, w, w^2, w, w^2, 0, 0, w^2, 1, 1, 0, 0, w^2, 0, w, 1, 1, 1, 0, 1, 0, w^2, 1, 1, w, 0, w^2, 0, w, w, 0, 1, 0, 1, 1, 0, 1, w^2, w^2, w^2, 1, 1, 0, 0, 1, 0, w^2, w, w, 0, w, w^2, 0, w, w, 1, w^2, 1, 0, w, w, w, w, w^2, 1, w, w^2, w, w^2 ]
[ 0, 0, 0, 0, 1, w^2, 0, 0, w^2, w, w, 0, w, w, 1, w, w, w, 0, w, w^2, 1, w, 0, 0, 1, w, 0, 1, 1, w, 0, w^2, 0, 1, 0, 0, w^2, 1, 1, w^2, 1, w^2, 0, 0, w^2, 1, 0, 0, w^2, w^2, 1, w, 0, w, w^2, 0, w, 1, 1, 1, 1, w, 1, 0, w, 1, w^2, 0, 0, 1, 0, w, 1, 0, 0, w^2, w, 1, 1, 0, w, 1, w, 0, w, 1, 0, w, w, w, w^2, w, w^2, 0, 1, w^2, w^2, 1, w, 0, 1, w^2, 1, w, w^2, 0, 1, w, 0, 0, 1, w^2, w, w, w^2, 1, 0, w^2, 1, 1, 1, 1, w^2, w, w, 0, 0, w^2, 1, w^2, 1, w, 1, 1, 0, 1, w^2, w^2, w^2, w, 1, 1, w^2, 0, 0, w, 0, 0, 0, 1, 1, w, w, w^2, 1, 0, w, 1, w^2, 0, 0, w^2, w, 0, 1, 0, w^2, w^2, w, w, 1 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, w, 1, 0, w, w^2, w, 1, 0, 1, w, w, 0, w, 1, w, w, 1, 1, 0, w^2, w^2, w^2, w, 0, w^2, 0, w, 1, w^2, w^2, w^2, w^2, 1, 0, 1, w, w, 1, 0, w, 1, w^2, w^2, 0, 1, 1, 1, w^2, 0, w^2, w^2, w, 1, w^2, w^2, w, w^2, 0, w^2, w^2, w^2, 1, w, 1, 0, w^2, 1, 0, w^2, w, w, w^2, 0, w, 0, w, 0, w, w^2, 1, 0, w^2, 0, w, 0, w, w^2, 0, w, 0, 0, w, w^2, 1, 1, 0, 1, 1, w^2, 0, 0, 0, 0, 0, w, w, 0, w^2, w^2, w, 1, 1, 0, w, w, 0, w, w^2, 0, w, w^2, w^2, w^2, w, w^2, w^2, w^2, 1, w, w^2, 1, 0, w, 1, 0, 0, w^2, w, 0, w^2, 0, w^2, 0, 0, 0, w^2, w, 0, w^2, 1, w^2, 0, 1, 1, w, w^2, w, w, 0, 1, 0, 0, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 1, w^2, 1, 0, 0, w, w^2, w^2, 0, 1, 0, 1, 1, 0, w^2, 1, w^2, w^2, w^2, 1, w, 0, 1, 1, w^2, w^2, w, 1, 0, w^2, w^2, 1, w, 1, 1, w^2, 0, w, 1, w^2, 0, w^2, w^2, 0, w, 1, w^2, 1, w, w, 0, 1, 0, w^2, w, 1, w^2, w, 1, w^2, w^2, w^2, 0, w, 1, w, 1, w^2, 1, w, w^2, 1, 0, w^2, 0, 0, 1, w^2, w, w, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, w, w, 0, w, w, 1, w^2, 1, w, w, 1, w, 0, w, w, w, 0, w^2, w, w^2, w^2, w^2, 0, w^2, 0, 0, w^2, w^2, 0, 0, 1, 1, w^2, w^2, w, w, 0, w^2, w^2, 0, w, w^2, w^2, w, 1, w^2, 0, 1, 0, 0, w^2, 0, 1, w^2, 0, 0, 1, 1, w^2, 1, w^2, w^2, w, w^2, 0, 0, 0, w^2, 1, 0, 0, w ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2008-04-25
Lb(172,8) = 117 is found by taking a subcode of: Lb(172,9) = 117 is found by lengthening of: Lb(171,9) = 117 MTS Ub(172,8) = 123 is found by considering truncation to: Ub(171,8) = 122 Da1
MTS: Tatsuya Maruta, Mito Takenaka, Maori Shinohara & Yukie Shobara, Constructing new linear codes from pseudo-cyclic codes, pp. 292-298 in Proc. 9th International Workshop on Algebraic and Combinatorial Coding Theory(ACCT) in Kranevo, Bulgaria, 2004.
Notes
|