| lower bound: | 109 |
| upper bound: | 114 |
Construction of a linear code [160,8,109] over GF(4):
[1]: [162, 9, 110] Linear Code over GF(2^2)
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, w^2, 0, w^2, 0, 1, w^2, w^2, w, 0, 1, w, 1, 0, 0, w, w^2, 0, 1, 1, 0, 1, w, 1, w, w^2, 1, 1, 0, 1, w, w, 1, 0, 1, 0, 0, 0, 1, w^2, 0, w^2, w^2, w^2, 0, w, 0, 0, w^2, 0, w, w^2, w, 1, 1, w^2, w^2, 1, w^2, w, w^2, 0, 1, w^2, 0, 1, w^2, w^2, w, w, w, 1, w^2, 0, 1, w, 1, 1, 0, w, w, 1, 0, w^2, w, 1, 1, 1, w^2, w^2, w, 0, 0, w^2, w, 0, w^2, 1, w^2, w, w^2, w, w, 1, w^2, 1, 0, w^2, 0, 0, w^2, 1, 0, w^2, w^2, w^2, 0, w^2, 0, 0, 0, w, 0, w, 1, 1, w, 0, w, w, w, w^2, 1, w, 1, w, w, w, 0, w^2, 1, 0, 0, w, 1, w, w, 0, 1, w^2, w^2, w, 0, w^2 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, w^2, 0, w^2, 0, 1, w^2, w^2, w, 1, 1, w, 1, 0, 0, w, w^2, 0, 1, 1, 0, 1, w, 1, w, w^2, 1, 1, 0, 1, w, w, 1, 0, 1, 0, 0, 0, 1, w^2, 0, w^2, w^2, w^2, 0, w^2, 0, 0, w^2, 0, w, w^2, w, 1, 1, w^2, w^2, 1, w^2, w, w^2, 0, 1, 0, 0, 1, w^2, w^2, w, w, w, 1, w^2, 0, 1, w, 1, 1, 0, w, w, w, 0, w^2, w, 1, 1, 1, w^2, w^2, w, 0, 0, w^2, w, 0, w^2, 1, w^2, w^2, w^2, w, w, 1, w^2, 1, 0, w^2, 0, 0, w^2, 1, 0, w^2, w^2, w^2, 0, w, 0, 0, 0, w, 0, w, 1, 1, w, 0, w, w, w, w^2, 1, w, 1, 0, w, w, 0, w^2, 1, 0, 0, w, 1, w, w, 0, 1, w^2, w^2, w, 0 ]
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, w^2, 0, 0, 0, w, w^2, w, 1, w^2, 1, w^2, 0, w, 1, w, w^2, w, w, 1, 1, 0, w, 0, 0, w, w^2, w, 1, 0, w, w^2, w^2, w, 0, 0, 1, 0, 1, w^2, 1, 0, w^2, 0, w^2, 1, w, w^2, w^2, 0, 1, w^2, 0, w, w^2, w, w, w, 0, w^2, 0, w, w, w^2, w^2, 1, w^2, w, 1, 1, 0, w^2, 1, 1, w, w, 0, w^2, 1, w^2, w, w^2, 1, 1, w, w, w^2, 0, w, w, 1, w^2, w, w^2, w, w^2, 1, 1, 0, w^2, 1, 1, 1, w^2, 1, 0, w^2, w, 0, w^2, w^2, 1, w^2, w, w^2, 0, w^2, 0, w^2, w, 0, w, 0, 0, 1, w^2, w^2, 1, 0, w, 0, 1, w^2, 1, 0, 0, 0, w, w, 1, 1, w^2, 1, w, 1, 0, w^2, w, w^2, w^2, w, 1, w^2, 1 ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, w^2, 0, 0, 0, w, w^2, w, 1, w^2, 1, w^2, 0, w, 1, w, w^2, w, w, 1, 1, 0, w, 0, 0, w, w^2, 0, 1, 0, w, w^2, w^2, w, 0, 0, 1, 0, 1, w^2, 1, 0, w^2, 0, w^2, w^2, w, w^2, w^2, 0, 1, w^2, 0, w, w^2, w, w, w, 0, w^2, 0, w, w, 1, w^2, 1, w^2, w, 1, 1, 0, w^2, 1, 1, w, w, 0, w^2, 1, w^2, w, 0, 1, 1, w, w, w^2, 0, w, w, 1, w^2, w, w^2, w, w^2, 1, 1, 0, 0, 1, 1, 1, w^2, 1, 0, w^2, w, 0, w^2, w^2, 1, w^2, w, w^2, 0, w^2, w, w^2, w, 0, w, 0, 0, 1, w^2, w^2, 1, 0, w, 0, 1, w^2, 1, 0, 1, 0, w, w, 1, 1, w^2, 1, w, 1, 0, w^2, w, w^2, w^2, w, 1, w^2 ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, w, 0, w, 1, w^2, 0, w, 1, 0, w^2, w^2, 0, 1, 0, w, 1, 0, w, w^2, w, w, 1, 1, w, 0, w, w, w, w^2, 0, w^2, 1, w, 0, 0, w^2, 1, 1, w, 0, 1, w^2, w^2, 1, w^2, w^2, w^2, 0, 1, w, 1, w, w^2, w, 0, w^2, 1, 1, w^2, w, w^2, w^2, w^2, w, 0, 0, 1, w, w^2, 1, w^2, w^2, w, 0, 0, 0, 0, w, 1, w^2, 1, w, w^2, 0, 0, w, 1, 1, w, 1, w, 1, w^2, w^2, 1, 0, w, w, w^2, w, w^2, 0, 1, 1, 1, w^2, w, 1, 1, w^2, 0, w, w^2, w^2, 1, 0, w, w^2, 1, 0, 1, w, w, w, w^2, 0, w, w^2, w^2, w, w, 1, w, w^2, w, 0, w^2, 0, 1, 1, 0, w^2, 1, w, 0, 1, w^2, w, 0, w, 0 ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, w^2, 1, w^2, w, 1, 1, w, 1, 0, w, w^2, 1, w^2, w^2, w, w, 0, w^2, 0, 0, w^2, 1, w^2, 0, w, 0, w^2, 1, w^2, 0, 0, w, 0, w, 1, w, 0, 1, 0, 1, w, 1, w^2, 1, 1, w, 1, 0, w^2, 1, w^2, w^2, w^2, 0, 1, 0, w^2, w^2, 1, w, 1, w, 1, w, w, 0, 1, w, w, w^2, w^2, 0, 1, w, 1, w^2, 1, 0, w, w, w^2, 1, 0, w^2, w^2, w, 1, w^2, 1, w^2, 1, w, w, 0, 1, 0, w, w, w, w, 0, 1, w^2, 0, 1, 1, w, 1, w^2, 1, 0, 1, 0, w^2, 1, w^2, 0, 0, 0, w, 1, 1, w, 0, w^2, 0, w, 1, w, 0, 0, w, 0, w^2, w^2, w, 1, w, w^2, w, 0, 1, w^2, 1, 1, w^2, w, 1, w, 0, 0, 0, 1 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, w^2, 1, w^2, w, 1, 1, w, 1, w^2, w, w^2, 1, w^2, w^2, w, w, 0, w^2, 0, 0, w^2, 1, w^2, 0, w, 0, 1, 1, w^2, 0, 0, w, 0, w, 1, w, 0, 1, 0, 1, w, 1, w^2, 1, 0, w, 1, 0, w^2, 1, w^2, w^2, w^2, 0, 1, 0, w^2, w^2, 1, w, 1, w, w^2, w, w, 0, 1, w, w, w^2, w^2, 0, 1, w, 1, w^2, 1, 0, w, w, w^2, 1, 0, w^2, w^2, w, 1, w^2, 1, w^2, 1, w, w, 0, 1, 0, w, w, 1, w, 0, 1, w^2, 0, 1, 1, w, 1, w^2, 1, 0, 1, 0, w^2, 1, w^2, w^2, 0, 0, w, 1, 1, w, 0, w^2, 0, w, 1, w, 0, 0, w, 0, w^2, w, w, 1, w, w^2, w, 0, 1, w^2, 1, 1, w^2, w, 1, w, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, w, 1, 1, w^2, 0, w, w, w, 0, 0, w^2, 1, 0, w, w, 0, w, w^2, w, w^2, 1, w, w, w, 0, w^2, w^2, w, 0, w, 0, 0, 0, w, 1, 0, 1, 1, 1, 0, w^2, 1, 0, 1, 0, w^2, 1, w^2, w, w, 1, 1, w, 1, w^2, 1, 0, w, 1, 0, 0, 1, 1, w^2, w^2, w^2, w, 1, 0, w, w^2, w, w, 0, w^2, w^2, w, w^2, 0, w^2, w, w, w, 1, 1, w^2, 0, 0, 1, w^2, 0, 1, w, 1, w^2, 1, 1, w^2, w, 1, w, 0, 1, 0, 0, 1, w, 0, 1, 1, 1, 0, 1, w^2, 0, 0, w^2, 0, w^2, w, w, w^2, 0, w^2, w^2, w^2, 1, w, w^2, w, w^2, 0, w^2, 0, 1, w, 0, 0, w^2, w, w^2, w^2, 0, w, 1, 1, w^2, 0, 1, 0, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, w, 1, 1, w^2, 0, w, w^2, w, 0, 0, w^2, 1, 0, w, w, 0, w, w^2, w, w^2, 1, w, w, w, w, w^2, w^2, w, 0, w, 0, 0, 0, w, 1, 0, 1, 1, 1, 0, w^2, 1, 0, 1, 0, w^2, 1, w^2, w, w, 1, 1, w, 1, w^2, 1, 0, w, 1, 0, w, 1, 1, w^2, w^2, w^2, w, 1, 0, w, w^2, w, w, 0, w^2, w^2, w, w^2, 1, w^2, w, w, w, 1, 1, w^2, 0, 0, 1, w^2, 0, 1, w, 1, w^2, 1, w^2, w^2, w, 1, w, 0, 1, 0, 0, 1, w, 0, 1, 1, 1, 0, 1, w^2, 0, 0, w^2, 0, w^2, w, w, w^2, 0, w^2, w^2, w^2, 1, w, w^2, w, w^2, 0, w^2, 0, 1, w, 0, 0, w^2, w, w^2, w^2, 0, w, 1, 1, w^2, 0, 1, 0 ] where w:=Root(x^2 + x + 1)[1,1];
[2]: [161, 8, 110] Linear Code over GF(2^2)
Shortening of [1] at { 162 }
[3]: [160, 8, 109] Linear Code over GF(2^2)
Puncturing of [2] at { 161 }
last modified: 2002-10-21
Lb(160,8) = 109 is found by shortening of: Lb(161,9) = 109 is found by truncation of: Lb(162,9) = 110 MSY Ub(160,8) = 114 is found by considering truncation to: Ub(159,8) = 113 Da1
MSY: T. Maruta, M. Shinohara, F. Yamane, K. Tsuji, E. Takata, H. Miki & R. Fujiwara, New linear codes from cyclic or generalized cyclic codes by puncturing, to appear in Proc. 10th International Workshop on Algebraic and Combinatorial Coding Theory(ACCT-10) in Zvenigorod, Russia, 2006.
Notes
|